Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Microbiol ; 206(6): 275, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38775940

ABSTRACT

In many European regions, both local metallic and non-metallic raw materials are poorly exploited due to their low quality and the lack of technologies to increase their economic value. In this context, the development of low cost and eco-friendly approaches, such as bioleaching of metal impurities, is crucial. The acidophilic strain Acidiphilium sp. SJH reduces Fe(III) to Fe(II) by coupling the oxidation of an organic substrate to the reduction of Fe(III) and can therefore be applied in the bioleaching of iron impurities from non-metallic raw materials. In this work, the physiology of Acidiphilium sp. SJH and the reduction of iron impurities from quartz sand and its derivatives have been studied during growth on media supplemented with various carbon sources and under different oxygenation conditions, highlighting that cell physiology and iron reduction are tightly coupled. Although the organism is known to be aerobic, maximum bioleaching performance was obtained by cultures cultivated until the exponential phase of growth under oxygen limitation. Among carbon sources, glucose has been shown to support faster biomass growth, while galactose allowed highest bioleaching. Moreover, Acidiphilium sp. SJH cells can synthesise and accumulate Poly-ß-hydroxybutyrate (PHB) during the process, a polymer with relevant application in biotechnology. In summary, this work gives an insight into the physiology of Acidiphilium sp. SJH, able to use different carbon sources and to synthesise a technologically relevant polymer (PHB), while removing metals from sand without the need to introduce modifications in the process set up.


Subject(s)
Acidiphilium , Iron , Oxidation-Reduction , Iron/metabolism , Acidiphilium/metabolism , Acidiphilium/growth & development , Hydroxybutyrates/metabolism , Polyesters/metabolism , Polymers/metabolism , Culture Media/chemistry , Biomass , Polyhydroxybutyrates
2.
Molecules ; 26(16)2021 Aug 11.
Article in English | MEDLINE | ID: mdl-34443446

ABSTRACT

A novel series of proflavine ureas, derivatives 11a-11i, were synthesized on the basis of molecular modeling design studies. The structure of the novel ureas was obtained from the pharmacological model, the parameters of which were determined from studies of the structure-activity relationship of previously prepared proflavine ureas bearing n-alkyl chains. The lipophilicity (LogP) and the changes in the standard entropy (ΔS°) of the urea models, the input parameters of the pharmacological model, were determined using quantum mechanics and cheminformatics. The anticancer activity of the synthesized derivatives was evaluated against NCI-60 human cancer cell lines. The urea derivatives azepyl 11b, phenyl 11c and phenylethyl 11f displayed the highest levels of anticancer activity, although the results were only a slight improvement over the hexyl urea, derivative 11j, which was reported in a previous publication. Several of the novel urea derivatives displayed GI50 values against the HCT-116 cancer cell line, which suggest the cytostatic effect of the compounds azepyl 11b-0.44 µM, phenyl 11c-0.23 µM, phenylethyl 11f-0.35 µM and hexyl 11j-0.36 µM. In contrast, the novel urea derivatives 11b, 11c and 11f exhibited levels of cytotoxicity three orders of magnitude lower than that of hexyl urea 11j or amsacrine.


Subject(s)
Entropy , Proflavine/chemical synthesis , Urea/chemical synthesis , Chemical Phenomena , Fibroblasts/cytology , Fibroblasts/drug effects , Humans , Inhibitory Concentration 50 , Kinetics , Male , Models, Molecular , Proflavine/chemistry , Proflavine/pharmacology , Urea/chemistry , Urea/pharmacology
3.
Carbohydr Res ; 472: 76-85, 2019 Jan 15.
Article in English | MEDLINE | ID: mdl-30529492

ABSTRACT

A flexible synthetic approach to biologically active sphingoid base-like compounds with a 3-amino-1,2-diol framework was achieved through a [3,3]-sigmatropic rearrangement and late stage olefin cross-metathesis as the key transformations. The stereochemistry of the newly created stereogenic centre was assigned via a single crystal X-ray analysis of the (4S,5R)-5-(hydroxymethyl)-4-vinyloxazolidine-2-thione. In order to rationalise the observed stereoselectivity of the aza-Claisen rearrangement, DFT calculations were carried out. The targeted isomeric sphingoid bases were screened in vitro for anticancer activity on a panel of seven human malignant cell lines. Cell viability experiments revealed that C17-homologues are more active than their C12 congeners.


Subject(s)
Sphingosine/analogs & derivatives , Sphingosine/chemical synthesis , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Crystallography, X-Ray , Drug Screening Assays, Antitumor , Humans , Immunoglobulin G/chemistry , Immunoglobulin G/pharmacology , Melphalan/chemical synthesis , Melphalan/chemistry , Melphalan/pharmacology , Molecular Structure , Sphingosine/chemistry , Sphingosine/pharmacology , Stereoisomerism , Synthetic Biology
4.
Carbohydr Res ; 468: 1-12, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30120993

ABSTRACT

A straightforward synthesis of l-lyxo- and l-xylo-phytosphingosine along with their isomeric analogues has been accomplished. The salient features of this approach are the utilization of [3,3]-sigmatropic rearrangements to install a C-N bond and application of a late stage Wittig or OCM reaction to incorporate the hydrophobic chain unit. The final compounds were evaluated regarding their ability to alter both leukaemia and solid tumor cancer cells viability.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Sphingosine/analogs & derivatives , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Chemistry Techniques, Synthetic , Humans , Isomerism , Sphingosine/chemical synthesis , Sphingosine/chemistry , Sphingosine/pharmacology
5.
Chemosphere ; 190: 405-416, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29024885

ABSTRACT

Degradation of commercial grade Reactive Black 5 (RB5) azo dye by chemical and electrochemical treatment was examined using a dimensionally stable anode and stainless steel cathodes as electrode materials, with NaCl as supporting electrolyte. The electrochemical treatment was compared to the chemical treatment with hypochlorite generated by electrolysis. The compounds present in the commercial grade RB5 azo dye and the products of its electrochemical degradation were separated using ion-pairing high performance liquid chromatography on reversed phase. The separated species were detected by diode array detector and electrospray ionization mass spectrometry. A suitable ion-pairing reversed phase HPLC-MS method with electrospray ionization for the separation and identification of the components was developed. The accurate mass of the parent and fragment ions were used in the determination of the empirical formulas of the components using the first-order mass spectra. Structural formulas of degradation products were proposed using these information and principles of organic chemistry and electrochemistry.


Subject(s)
Electrolysis/methods , Naphthalenesulfonates/chemistry , Azo Compounds/chemistry , Chromatography, High Pressure Liquid/methods , Coloring Agents/chemistry , Molecular Structure , Molecular Weight , Oxidation-Reduction , Spectrometry, Mass, Electrospray Ionization/methods , Water Purification/methods
6.
Res Microbiol ; 160(10): 767-74, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19782750

ABSTRACT

Mesophilic iron and sulfur-oxidizing acidophiles are readily found in acid mine drainage sites and bioleaching operations, but relatively little is known about their activities at suboptimal temperatures and in cold environments. The purpose of this work was to characterize the oxidation of elemental sulfur (S(0)), tetrathionate (S4O6(2-)) and ferrous iron (Fe2+) by the psychrotolerant Acidithiobacillus strain SS3. The rates of elemental sulfur and tetrathionate oxidation had temperature optima of 20 degrees and 25 degrees C, respectively, determined using a temperature gradient incubator that involved narrow (1.1 degrees C) incremental increases from 5 degrees to 30 degrees C. Activation energies calculated from the Arrhenius plots were 61 and 89 kJ mol(-1) for tetrathionate and 110 kJ mol(-1) for S(0) oxidation. The oxidation of elemental sulfur produced sulfuric acid at 5 degrees C and decreased the pH to approximately 1. The low pH inhibited further oxidation of the substrate. In media with both S(0) and Fe2+, oxidation of elemental sulfur did not commence until all available ferrous iron was oxidized. These data on sequential oxidation of the two substrates are in keeping with upregulation and downregulation of several proteins previously noted in the literature. Ferric iron was reduced to Fe2+ in parallel with elemental sulfur oxidation, indicating the presence of a sulfur:ferric iron reductase system in this bacterium.


Subject(s)
Acidithiobacillus/metabolism , Cold Temperature , Ferrous Compounds/metabolism , Sulfur/metabolism , Tetrathionic Acid/metabolism , Cations, Divalent/metabolism , Oxidation-Reduction
7.
Biotechnol Bioeng ; 97(6): 1470-8, 2007 Aug 15.
Article in English | MEDLINE | ID: mdl-17304566

ABSTRACT

This study comprises the first report of ferrous iron oxidation by psychrotolerant, acidophilic iron-oxidizing bacteria capable of growing at 5 degrees C. Samples of mine drainage-impacted surface soils and sediments from the Norilsk mining region (Taimyr, Siberia) and Kristineberg (Skellefte district, Sweden) were inoculated into acidic ferrous sulfate media and incubated at 5 degrees C. Iron oxidation was preceded by an approximately 3-month lag period that was reduced in subsequent cultures. Three enrichment cultures were chosen for further work and one culture designated as isolate SS3 was purified by colony isolation from a Norilsk enrichment culture for determining the kinetics of iron oxidation. The 16S rRNA based phylogeny of SS3 and two other psychrotolerant cultures, SS5 from Norilsk and SK5 from Northern Sweden, was determined. Comparative analysis of amplified 16S rRNA gene sequences showed that the psychrotolerant cultures aligned within Acidithiobacillus ferrooxidans. The rate constant of iron oxidation by growing cultures of SS3 was in the range of 0.0162-0.0104 h(-1) depending on the initial pH. The oxidation kinetics followed an exponential pattern, consistent with a first order rate expression. Parallel iron oxidation by a mesophilic reference culture of Acidithiobacillus ferrooxidans was extremely slow and linear. Precipitates harvested from the 5 degrees C culture were identified by X-ray diffraction as mixtures of schwertmannite (ideal formula Fe(8)O(8)(OH)(6)SO(4)) and jarosite (KFe(3)(SO(4))(2)(OH)(6)). Jarosite was much more dominant in precipitates produced at 30 degrees C.


Subject(s)
Acidithiobacillus/classification , Acidithiobacillus/metabolism , Iron/metabolism , Acidithiobacillus/genetics , Acidithiobacillus/isolation & purification , Oxidation-Reduction , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL