Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Cell Oncol (Dordr) ; 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38036929

ABSTRACT

PURPOSE: PiwiL1 has been reported to be over-expressed in many cancers. However, the molecular mechanism by which these proteins contribute to tumorigenesis and their regulation in cancer cells is still unclear. We intend to understand the role of PiwiL1 in tumorigenesis and also its regulation in cervical cells. METHODS: We studied the effect of loss of PiwiL1 function on tumor properties of cervical cancer cells in vitro and in vivo. Also we have looked into the effect of PiwiL1 overexpression in the malignant transformation of normal cells both in vitro and in vivo. Further RNA-seq and RIP-seq analyses were done to get insight of the direct and indirect targets of PiwiL1 in the cervical cancer cells. RESULTS: Here, we report that PiwiL1 is not only over-expressed, but also play a major role in tumor induction and progression. Abolition of PiwiL1 in CaSki cells led to a decrease in the tumor-associated properties, whereas, its upregulation conferred malignant transformation of normal HaCaT cells. Our study delineates a new link between HPV oncogenes, E6 and E7 with PiwiL1. p53 and E2F1 directly bind and differentially regulate PiwiL1 promoter in a context-dependant manner. Further, RNA-seq together with RIP-RNA-seq suggested a strong and direct role for PiwiL1 in promoting metastasis in cervical cancer cells. CONCLUSION: Our study demonstrates that PiwiL1 act as an oncogene in cervical cancer by inducing tumor-associated properties and EMT pathway. The finding that HPV oncogenes, E6/E7 can positively regulate PiwiL1 suggests a possible mechanism behind HPV-mediated tumorigenesis in cervical cancer.

2.
FASEB J ; 37(8): e23062, 2023 08.
Article in English | MEDLINE | ID: mdl-37389962

ABSTRACT

The factors that drive dengue virus (DENV) evolution, and selection of virulent variants are yet not clear. Higher environmental temperature shortens DENV extrinsic incubation period in mosquitoes, increases human transmission, and plays a critical role in outbreak dynamics. In the present study, we looked at the effect of temperature in altering the virus virulence. We found that DENV cultured at a higher temperature in C6/36 mosquito cells was significantly more virulent than the virus grown at a lower temperature. In a mouse model, the virulent strain induced enhanced viremia and aggressive disease with a short course, hemorrhage, severe vascular permeability, and death. Higher inflammatory cytokine response, thrombocytopenia, and severe histopathological changes in vital organs such as heart, liver, and kidney were hallmarks of the disease. Importantly, it required only a few passages for the virus to acquire a quasi-species population harboring virulence-imparting mutations. Whole genome comparison with a lower temperature passaged strain identified key genomic changes in the structural protein-coding regions as well as in the 3'UTR of the viral genome. Our results point out that virulence-enhancing genetic changes could occur in the dengue virus genome under enhanced growth temperature conditions in mosquito cells.


Subject(s)
Dengue Virus , Humans , Animals , Mice , Dengue Virus/genetics , Serogroup , Temperature , Virulence , 3' Untranslated Regions , Disease Models, Animal
3.
Am J Cancer Res ; 12(1): 17-47, 2022.
Article in English | MEDLINE | ID: mdl-35141003

ABSTRACT

BRCA1 mutation carriers have a greater risk of developing cancers in hormone-responsive tissues like breasts and ovaries. However, this tissue-specific incidence of BRCA1 related cancers remains elusive. The majority of the BRCA1 mutated breast cancers exhibit typical histopathological features of high-grade tumors, with basal epithelial phenotype, classified as triple-negative molecular subtype and have a higher percentage of DNA damage and chromosomal abnormality. Though there are many studies relating BRCA1 with ER-α (Estrogen receptor-α), it has not been reported whether E2 (Estrogen) -ER-α signaling can modulate the DNA repair activities of BRCA1. The present study analyzes whether deregulation of ER-α signaling, arising as a result of E2/ER-α deficiency, could impact the BRCA1 dependent DDR (DNA Damage Response) pathways, predominantly those of DNA-DSB (Double Strand break) repair and oxidative damage response. We demonstrate that E2/E2-stimulated ER-α can augment BRCA1 mediated high fidelity repairs like HRR (Homologous Recombination Repair) and BER (Base Excision Repair) in breast cancer cells. Conversely, a condition of ER-α deficiency itself or any interruption in ligand-dependent ER-α transactivation resulted in delayed DNA damage repair, leading to persistent activation of γH2AX and retention of unrepaired DNA lesions, thereby triggering tumor progression. ER-α deficiency not only limited the HRR in cells but also facilitated the DSB repair through error prone pathways like NHEJ (Non Homologous End Joining). ER-α deficiency associated persistence of DNA lesions and reduced expression of DDR proteins were validated in human mammary tumors.

4.
Front Vet Sci ; 6: 283, 2019.
Article in English | MEDLINE | ID: mdl-31508437

ABSTRACT

Human breast cancers (HBCs) are one of the leading causes of global cancer death among women. Domesticated canines are the most affected domestic species with a prevalence rate of breast cancer more than three times in women. While the human cancer patients receive substantial diagnostic and treatment facilities, inadequacy in canine cancer care, calls for greater attention. Fine Needle Aspiration Cytology (FNAC) is comparatively simple, quick, and easily reproducible technique, which aids in pre-surgical diagnosis. In humans, FNAC has a standard protocol, the Robinson's grading system, which has high correlation with the established histological grading system of Scarff Bloom- Richardson. However, Canine Mammary Tumors (CMTs), which are known to be similar to HBCs in biological behavior and gene expressions, still bank on the histopathological methods for diagnostic purposes. This review sheds light on various factors that could be considered for developing a standard FNAC technique for CMT grading and analyzes its future perspectives.

SELECTION OF CITATIONS
SEARCH DETAIL