Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Antibiotics (Basel) ; 12(3)2023 Mar 03.
Article in English | MEDLINE | ID: mdl-36978374

ABSTRACT

Biological synthesis of metal nanoparticles has a significant impact in developing sustainable technologies for human, animal, and environmental safety. In this study, we synthesized gold and silver nanoparticles (NPs) using Sedeveria pink ruby (SP) extract and characterized them using UV-visible spectrophotometry, FESEM-EDX, HR-TEM, XRD, and FT-IR spectroscopy. Furthermore, antimicrobial and antioxidant activities and cytotoxicity of the synthesized NPs were evaluated. UV-visible absorption spectra showed λmax at 531 and 410 nm, corresponding to the presence of SP gold NPs (SP-AuNPs) and SP silver NPs (SP-AgNPs). Most NPs were spherical and a few were triangular rods, measuring 5-30 and 10-40 nm, respectively. EDX elemental composition analysis revealed that SP-AuNPs and SP-AgNPs accounted for >60% and 30% of NPs, respectively. Additionally, some organic moieties were present, likely derived from various metabolites in the natural plant extract, which acted as stabilizing and reducing agents. Next, the antimicrobial activity of the NPs against pathogenic microbes was tested. SP-AgNPs showed potent antibacterial activity against Escherichia coli and Yersinia pseudotuberculosis. Moreover, at moderate and low concentrations, both NPs exhibited weak cytotoxicity in chicken fibroblasts (DF-1) and macrophages (HD11) as well as human intestinal cancer cells (HT-29). Meanwhile, at high concentrations, the NPs exhibited strong cytotoxicity in both chicken and human cell lines. Therefore, the synthesized SP-AuNPs and SP-AgNPs may act as promising materials to treat poultry diseases.

2.
Sci Total Environ ; 864: 160968, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36549541

ABSTRACT

Natural toxicants, particularly methoxy phenols (MPs) generated by wildfire lignin, can accumulate in the environment, and cause serious health hazards in living organisms. Although the toxicity of MPs such as guaiacol and catechol has recently been described, there is minimal evidence of ecotoxicological effects of syringol. As a result, this study focuses on determining the toxicity by evaluating the cytotoxic and teratogenic effects of syringol in vitro and in vivo in human embryonic kidney (HEK-293) cells and zebrafish embryos, respectively. The ecotoxicity of syringol was predicted to be 63.8 mg/L using the ECOSAR (ECOlogical Structure Activity Relationship) prediction tool, and molecular docking analysis was used to determine the interaction and binding affinities of syringol with human apoptotic proteins in silico. In HEK-293 cells, exposure of syringol (0.5-2 mg/L) has induced cytotoxicity in a concentration-dependent manner. In zebrafish larvae, exposure of syringol (0.5-2 mg/L) has induced dose-dependent embryo toxic effects (or growth abnormalities such as yolk sac edema, pericardial edema, skeletal abnormality, and hyperemia), and changes in growth morphometrics (head height, eye, yolk sac, and pericardial area, heart rate) in particular, the heart rate of larvae was found to be significantly decreased (p<0.001). After a 4-day experimental trial, the accumulated concentration of syringol in zebrafish larvae was confirmed both qualitatively (HPLC-MS - High Performance Liquid Chromatography-Mass spectrometry) and quantitatively (LC-QTOF-HRMS - Liquid Chromatography-Quadrupolar Time of Flight-High Resolution Mass spectrometry). The craniofacial abnormalities induced by syringol exposure (0.5-2 mg/L) were detected as anomalies in cartilaginous development and locomotor deficits using alcian blue staining and locomotor analyses, respectively. Significant increase in oxidative stress parameters (including reactive oxygen species generation, lipid peroxidation, superoxide dismutase, catalase, lactate dehydrogenase and nitric oxide production) (p<0.001) and substantial decrease in glutathione levels were observed (p<0.05) in syringol exposed zebrafish larvae through enzymatic analysis. Additionally, through acridine orange staining and gene expression analyses, syringol (2 mg/L) was found to activate apoptosis in zebrafish larvae. Considering the cytotoxic, embryotoxic (teratogenicity), and oxidative stress-related apoptotic effects of syringol in the zebrafish model, syringol has the potential to emerge as a potent environmental toxicant posing serious health hazards in many living systems; however, further research on its toxicological effects on the actual ecosystem and in higher animal models is required to confirm its consequences.


Subject(s)
Teratogenesis , Wildfires , Animals , Humans , Zebrafish , Ecosystem , HEK293 Cells , Molecular Docking Simulation , Embryo, Nonmammalian , Oxidative Stress , Larva
3.
Microb Pathog ; 172: 105778, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36116607

ABSTRACT

Infections due to multidrug-resistant Pseudomonas aeruginosa are prevalent among patients with cystic fibrosis. The emergence of antibiotic-resistant pathogens necessitated the development of novel low-risk natural antibacterial compounds. Herbal medicines are used from dates of the origin of mankind and still serve their purpose as therapeutic agents. We demonstrated the antibacterial activity of Withaferin A extracted from the traditional herb, ashwagandha or winter cherry (Withania somnifera). Withaferin A exhibits strong antibacterial activity against P. aeruginosa with a minimum inhibitory concentration of 60 µM and minimum bactericidal concentration of 80 µM. Results obtained from membrane stabilization assay and electron microscopic analysis showed that Withaferin A acts by damaging the cell membrane of P. aeruginosa. Additionally, we investigated oxidative stress and inflammatory response after Withaferin A treatment in P. aeruginosa infected zebrafish larvae model. The results indicate that the level of ROS, and its related lipid peroxidation and apoptosis were significantly reduced after treated with Withaferin A. Consequently, an increment in antioxidant enzymes level such as superoxide dismutase (SOD) and catalase (CAT) was observed. Macrophage localization experiment showed a smaller number of localized macrophages in zebrafish, which indicates the reduction in inflammatory response. In conclusion, Withaferin A could serve as an alternative natural product in the treatment of infections caused by P. aeruginosa.


Subject(s)
Biological Products , Withania , Animals , Pseudomonas aeruginosa , Zebrafish , Catalase , Larva , Antioxidants , Reactive Oxygen Species , Anti-Bacterial Agents/pharmacology , Inflammation , Superoxide Dismutase
4.
Chemosphere ; 305: 135274, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35690172

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) pollution occurs in freshwater and marine environment by anthropogenic activities. Moreover, analysis of the PAHs-degradation by the indigenous bacterial strains is limited, compared with other degraders. In this study, naphthalene (NAP) biodegrading bacteria were screened by enrichment culture method. Three bacterial strains were obtained for NAP degradation and identified as Bacillus cereus CK1, Pseudomonas aeruginosa KD4 and Enterobacter aerogenes SR6. The amount of hydrogen, carbon, sulphur and nitrogen of wastewater were analyzed. Total bacterial count increased at increasing incubation time (6-60 days) and moderately decreased at higher NAP concentrations. The bacterial population increased after 48 days at 250 ppm NAP (519 ± 15.3 MPM/mL) concentration and this level increased at 500 ppm NAP concentration (541 ± 12.5 MPM/mL). NAP was degraded by bacterial consortium within 36 h-99% at 30 °C. PAHs degrading bacteria were grown optimally at 4% inoculum concentrations. Bacterial consortium was able to degrade 98% NAP at pH 7.0 after 36 h incubation and degradation potential was improved (100%) after 34 h (pH 8.0). Also at pH 9.0, 100% biodegradation was registered after 36 h incubation. When the agitation speed enhanced from 50 ppm to 150 ppm, increased bacteria growth and increased NAP degradation within 42 h incubation. Among the nutrient sources, beef extract, peptone and glucose supplemented medium supported complete degradation of PAHs within 30 h, whereas peptone supported 94.3% degradation at this time. Glucose supplemented medium showed only 2.8% NAP degradation after 6 h incubation and reached maximum (100%) within 42 h incubation. Bacterial consortium can be used to reduce NAP under optimal process conditions and this method can be used for the removal of various hydrocarbon-compounds.


Subject(s)
Peptones , Polycyclic Aromatic Hydrocarbons , Bacteria/metabolism , Biodegradation, Environmental , Glucose/metabolism , Naphthalenes/metabolism , Polycyclic Aromatic Hydrocarbons/metabolism
5.
Chemosphere ; 306: 135479, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35753418

ABSTRACT

The removal of various highly toxic heavy metals from wastewater environment is an important task to improve environment. The biosorption potential of cadmium, cobalt and zinc was evaluated using Ulva flexuosa biomass. The impacts of adsorbent dosage, pH of the medium, contact time, and agitation speed were analyzed. The maximum biosorption potential was reached at pH 4.0, 0.4 g initial biosorbent dosage, contact time 40 min and 30 mg/L initial metal concentration for cadmium, while the other factors were similar to zinc, except 35 min contact time (p < 0.01). The optimum absorption was pH 4, 0.6% adsorbent dosage, after 30 min contact time with the heavy metals and 40 mg/L cobalt concentration. Heavy metal removal efficiency was 94.8 ± 3.3%, 87.5 ± 2.3%, and 90.8 ± 1.4%, for cadmium, cobalt, and zinc, respectively (p < 0.01). The Langmuir constant (R2) was 0.980 for cadmium, 0.838 for cobalt and it was 0.718 for zinc. The present results revealed that the selected acid modified biomass was highly suitable for the adsorption of metal ions such as, Cd2+, Co2+ and Zn2+. The present work revealed the potential application of algal biomass for the removal of various heavy metals from the environment.


Subject(s)
Metals, Heavy , Ulva , Water Pollutants, Chemical , Adsorption , Biomass , Cadmium , Cobalt , Hydrogen-Ion Concentration , Kinetics , Water , Water Pollutants, Chemical/analysis , Zinc
6.
Environ Res ; 212(Pt B): 113295, 2022 09.
Article in English | MEDLINE | ID: mdl-35452668

ABSTRACT

Metal nanoparticles furnished by the green synthesis approach have exhibited fascinating attributes owing to their biocompatibility with biomolecules, and their rapid environmentally friendly synthesis. On copper oxide (CuO) nanoparticles, a laser induced bio reduction work has been accomplish using Centella asiatica aqueous extract at room temperature is the pioneer in the field. This synthesis technique is easy, fruitful, eco-friendly, and counterfeit for the size-tunable synthesis of diverse shapes of stable copper nanoparticles. UV-visible spectroscopy, Field Emission Scanning Electron Microscopy (FESEM), Fourier Transform Infrared Spectroscopy (FTIR), Energy - Dispersive X-ray Spectroscopy (EDX), X-ray diffraction (XRD) and photodegradation study have astounding properties of regulating the formation, crystalline nature, and morphology of an integrated specimen. Moreover, the obtained copper oxide nanoparticle has the tendency to decrease the absorbance maximum value of methylene blue because of the catalytic activity posed by these nanoparticles on the reduction of methylene blue by Centella asiatica. It has been studied and confirmed by UV-visible spectrophotometer, and it has been recognised as an electron relay effect.


Subject(s)
Copper , Metal Nanoparticles , Copper/chemistry , Lasers , Metal Nanoparticles/chemistry , Methylene Blue/chemistry , Plant Extracts/pharmacology , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
7.
Life Sci ; 298: 120507, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35358593

ABSTRACT

AIMS: This study aims to elucidate a systematic free-radical quenching ability of synthesized benzo[b]thiophene derivatives using in vitro assays and acrylamide induced oxidatively stressed model in zebrafish larvae. MATERIALS AND METHODS: Antioxidant activity of the compounds was evaluated using in vitro methods. The toxicity of the compounds was evaluated in Madin-Darby Canine Kidney (MDCK) cell line and zebrafish embryos. Oxidative stress was generated by acrylamide (1 mM) in zebrafish larvae and treated with compounds to evaluate the in vivo antioxidant ability. Specific fluorescence dyes were used to detect ROS generation, lipid peroxidation, and cell death followed by gene expression using RT PCR. Density functional theory (DFT) and in silico pharmacokinetics were also studied. KEY FINDINGS: Compound BP and EP have a greater in vitro free radical scavenging ability. The maximum tolerated concentration (MTC) of the compounds in zebrafish larvae is 80 µM. The antioxidant system in zebrafish larvae was dysregulated due to acrylamide exposure and improvement was found while treating acrylamide exposed larvae with compounds 1-(3-hydroxybenzo[b]thiophen-2-yl) ethanone (BP) and 1-(3-hydroxybenzo[b]thiophen-2-yl) propan-1-one hydrate (EP). Compound BP and EP enhanced the SOD and CAT activity, reduced the ROS and lipid peroxidation level, thus decreasing cell death in zebrafish larvae. Compound BP and EP also improved the glutathione redox cycle by stabilizing glutathione-related gene expressions. SIGNIFICANCE: Hydroxyl-containing compounds BP and EP are promising lead molecules for pathological conditions related to oxidative stress, which showed an attenuated effect on acrylamide-induced oxidative stress in zebrafish larvae by enhancing the glutathione redox cycle and enzymatic antioxidants.


Subject(s)
Acrylamide , Zebrafish , Acrylamide/toxicity , Animals , Antioxidants/metabolism , Antioxidants/pharmacology , Dogs , Glutathione/metabolism , Hydroxyl Radical/metabolism , Larva , Oxidation-Reduction , Oxidative Stress , Reactive Oxygen Species/metabolism , Thiophenes/metabolism , Thiophenes/pharmacology
8.
Chemosphere ; 299: 134396, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35341766

ABSTRACT

In the current study, cobalt magnesium ferrites (Mg0.8-xCoxFe2O4 for x values 0.2, 0.4 and 0.6) nanoparticles are prepared by combustion method. The morphology, optical, structural, photocatalytic, compositional and vibrational properties of Mg0.8-xCoxFe2O4 by the influence of cobalt doping is investigated. Fourier Transform Infrared (FTIR) Spectroscopy and X-ray diffraction (XRD) confirms the formation of spinel cubic phase of the prepared ferrites samples. The optical band gap energy shows a strong effect on crystallite size and increases from 4.2 to 4.4 eV as the concentration of cobalt gets increased. TEM images of Mg0.8-xCoxFe2O4 clearly reveal spherical nanoparticles with decreasing particle size which ranges from 16 to 10 nm. EDAX spectrum confirms the existence of Fe, Co, Mg and oxygen. The photocatalytic studies of Mg0.8-xCoxFe2O4 are performed for anionic and cationic dyes. The rate constant values of methylene blue are found as 0.017/min, 0.019/min and 0.022/min for Mg0.8-xCoxFe2O4 for x values 0.2, 0.4 and 0.6 respectively. The degradation efficacy of the prepared samples to degrade methylene blue is high (95%) and it indicates that they may be efficient in degrading environmental pollutants and may prove out to be competent photo-catalyst.


Subject(s)
Thiazines , Ultraviolet Rays , Cations , Cobalt/chemistry , Coloring Agents , Ferric Compounds , Magnesium Compounds , Methylene Blue , Photochemistry
9.
J Equine Vet Sci ; 113: 103938, 2022 06.
Article in English | MEDLINE | ID: mdl-35346771

ABSTRACT

Greenhouse gases emission from livestock is the major concern for the ecosystem. Despite the lower contribution of non-ruminants towards greenhouse gas emission as compared to the ruminants, the emission of methane (CH4) gas from equines is expected to be increased in future due to its increasing population. Thus, it is essential to find or screen potential anti-methanogenic agent in a cost-effective and quicker manner. Considering this, the present investigation was aimed to analyze anti-methanogenic characteristic of bioactive compounds of safflower oil by targeting methanogenesis catalyzing enzyme (Methyl-coenzyme M reductase; MCR) via in silico tool. Initially, a total of 25 compounds associated with safflower oil were selected and their drug-likeness traits were predicted through Lipinski's rule of 5. Of 25 compounds, 9 compounds passed all the parameters of Lipinski's rule of five. These 9 ligands were further submitted for ADME traits analysis using Swiss ADME tool. Results revealed the absence of Lipinski's violation and approval of drug-likeness attributes of methyl tetradecanoate, 3-isopropyl-6-methylenecyclohex-1-ene, trans-2,4-decadienal, cis-6-nonenal, limonene, syringic acids, matairesinol, acacetin, and 2,5-octanedione. Molecular docking analysis was performed for analyzing the affinity between the selected 9 ligands and MCR receptor using FRED v3.2.0 from OpenEye Scientific Software and Discovery Studio client v16.1.0. Results showed maximum binding interaction of acacetin with MCR with the chemguass4 score of -13.35. Other ligands showed comparatively lower binding affinity in the order of matairesinol (-12.43) > methyl tetradecanoate (-9.25) > cis-6-nonenal (-7.88) > syringic acids (-7.73) > limonene (-7.18) > trans-2,4-decadienal (-7.07) > 3-isopropyl-6-methylenecyclohex-1-ene (-7.01) > 2,5-octanedione (-7.0.). In a nutshell, these identified compounds were observed as potential agents to reduce CH4 production from equines by targeting MCR. This in silico study emphasized the role of safflower-associated compounds in developing anti-methanogenic drug for equines in future.


Subject(s)
Euryarchaeota , Greenhouse Gases , Animals , Ecosystem , Euryarchaeota/metabolism , Greenhouse Gases/metabolism , Horses , Ligands , Limonene/metabolism , Molecular Docking Simulation , Oxidoreductases , Safflower Oil/metabolism
10.
Toxicon ; 210: 100-108, 2022 Apr 30.
Article in English | MEDLINE | ID: mdl-35217022

ABSTRACT

Peptide-based drug development is an emerging and promising approach in cancer therapeutics. The present study focuses on understanding the mechanism of MP12 peptide (MDNHVCIPLCPP) derived from cysteine-rich trypsin inhibitor protein of virulence factor of pathogenic fungus Aphanomyces invadans. MP12 is involved in antiproliferative activity against the human laryngeal epithelial cell (Hep-2), demonstrated in this study. MP12 sequence showed a significant binding score and has multiple hydrogen bond interactions with the proteins that play a vital role in apoptotic pathways such as Bcl-2, caspase-3, caspase-7, and XIAP. Based on the bioinformatics characterization and molecular docking result, further study was focused on MP12 antiproliferative activity. The peptide showed a dose-dependent inhibition against Hep-2 cell line proliferation, analyzed over MTT and neutral red uptake assays. The IC50 value of the MP12 peptide was calculated based on the antiproliferative property (24.7 ± 0.34 µM). MP12 treated Hep-2 cells showed significant shrinkage in cell morphology compared to untreated cells, inhibiting the cell cycle. The gene expression analysis validated that the MP12 significantly upregulates the caspase-3, caspase-7, and caspase-9 genes. The developmental toxicity study using zebrafish embryos as in vivo model proved that the MP12 is nontoxic. Based on the obtained results, we proposed that the peptide MP12 derived from cysteine-rich trypsin inhibitor protein of virulence molecule of pathogenic fungus have a potential antiproliferative activity. However, further clinical trials need to be focused on the mechanism and therapeutic application against laryngeal cancer.


Subject(s)
Aphanomyces , Zebrafish , Animals , Aphanomyces/genetics , Apoptosis , Cell Line, Tumor , Cell Proliferation , Cysteine , Epithelial Cells , Fungi , Humans , Molecular Docking Simulation , Trypsin Inhibitors , Virulence Factors
11.
Environ Res ; 211: 112970, 2022 08.
Article in English | MEDLINE | ID: mdl-35219632

ABSTRACT

Recently, researchers are concentrating on the synthesis of composite materials to enhance the efficiency of the materials in various applications. In this work, nickel vanadium oxide (NiV2O6) nanocomposite material is prepared via two methods and the prepared samples have been characterized with basic studies to analyse the effect of preparation method and the reaction time. The XRD studies reveal a polycrystalline growth in both the methods. The broad XRD peaks obtained for samples prepared via hydrothermal method suggests the size reduction and 1D nanostructure formation. The SEM analysis shows the formation of 1D structures in hydrothermal and 3D microsphere structures in solvothermal methods. The possible formation mechanism behind this formation has been discussed in this manuscript. The FTIR peaks in the fingerprint region confirm the formation and vibration of metal-oxygen bonds. The large optical bandgap values obtained from Tauc plot again confirms the formation of nanostructures of the synthesized samples. The photocatalytic activity of nickel vanadium oxide on methylene blue dye under halogen light were performed and, the recyclability of the sample is investigated. It was found from the photocatalytic spectrum that, the samples prepared from both the methods shows a degradation efficiency of more than 80% within 150 min. It was confirmed that the prepared NiV2O6 photocatalyst samples does not lose their degradation ability even after five cycles of repeated usage.


Subject(s)
Nanocomposites , Nickel , Catalysis , Nanocomposites/chemistry , Oxides , Solvents , Vanadium , Wastewater
12.
Animals (Basel) ; 11(8)2021 Aug 09.
Article in English | MEDLINE | ID: mdl-34438807

ABSTRACT

Plant secondary metabolite (PSM) degradations and feed breakdown into small particles may occur primarily in the rumen. It is possible to predict the rate and extent of feed disappearance in the rumen during incubation by different in vitro techniques, which differ based on the PSM structures, including phenolics, and flavonoids. However, PSM degradation and conversion efficiency in the rumen remains unclear. This study's objective was to evaluate the in vitro degradation of a group of PSMs in the rumen fluid, collected from Hanwoo steer samples. PSMs including rutin, vitexin, myricetin, p-coumaric acid, ferulic acid, caffeic acid, quercetin, luteolin, propyl gallate, and kaempferol were used in their pure forms at 1mg/250 mL in a rumen fluid buffer system. The mixture of selected PSMs and buffer was incubated at 39 °C for 12-72 h, and samples were collected every 12 h and analyzed by a high-performance liquid chromatography-diode array detector (HPLC-DAD) to determine the biotransformation of the polyphenolics. The results revealed that the luteolin, ferulic acid, caffeic acid, coumaric acid, rutin, myricetin, vitexin, kaempferol, and quercetin were decreased after 12 h of incubation in the rumen fluid (p ≤ 0.05) and were more than 70% decreased at 72 h. In contrast, the propyl gallate concentrations were not significantly changed after 24 h of incubation in rumen fluid compared to other metabolites. Finally, microbial dynamics study showed that the Firmicutes, Bacterodetes, Actinobacteria, and Syngergistetes were the dominant phyla found in rumen fluids. The data suggest that most polyphenolic compounds may degrade or reform new complex structures in the rumen.

13.
Molecules ; 26(7)2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33915783

ABSTRACT

Obesity has recently emerged as a public health issue facing developing countries in the world. It is caused by the accumulation of fat in adipose, characterized by insulin resistance, excessive lipid accumulation, inflammation, and oxidative stress, leading to an increase in adipokine levels. Herein, we investigated the capacity of a bioactive polyphenolic compound (ferulic acid (FA)) to control adipocyte dysfunction in 3T3-L1 adipocytes (in vitro). Key adipocyte differentiation markers, glycerol content, lipolysis-associated mRNA, and proteins were measured in experimental adipocytes. FA-treated adipocytes exhibited downregulated key adipocyte differentiation factors peroxisome proliferator-activated receptor-γ (PPAR-γ), CCAT enhancer binding-proteins-α (C/EBP-α) and its downstream targets in a time-dependent manner. The FA-treated 3T3-L1 adipocytes showed an increased release of glycerol content compared with non-treated adipocytes. Also, FA treatment significantly up-regulated the lipolysis-related factors, including p-HSL, and p-perilipin, and down-regulated ApoD, Sema3C, Cxcl12, Sfrp2, p-stearoyl-CoA desaturase 1 (SCD1), adiponectin, and Grk5. Also, the FA treatment showed significantly down-regulated adipokines leptin, chemerin, and irisin than the non-treated cells. The present findings indicated that FA showed significant anti-adipogenic and lipogenic activities by regulating key adipocyte factors and enzyme, enhanced lipolysis by HSL/perilipin cascade. FA is considered a potent molecule to prevent obesity and its associated metabolic changes in the future.


Subject(s)
Adipocytes/drug effects , Adipocytes/metabolism , Coumaric Acids/pharmacology , Homeostasis/drug effects , 3T3-L1 Cells , Adipose Tissue/drug effects , Adipose Tissue/metabolism , Animals , Biomarkers , Cell Differentiation/drug effects , Lipid Metabolism/drug effects , Lipogenesis/drug effects , Mice
14.
Biology (Basel) ; 10(1)2020 Dec 24.
Article in English | MEDLINE | ID: mdl-33374127

ABSTRACT

A co-culture system allows researchers to investigate the complex interactions between two cell types under various environments, such as those that promote differentiation and growth as well as those that mimic healthy and diseased states, in vitro. In this paper, we review the most common co-culture systems for myocytes and adipocytes. The in vitro techniques mimic the in vivo environment and are used to investigate the causal relationships between different cell lines. Here, we briefly discuss mono-culture and co-culture cell systems and their applicability to the study of communication between two or more cell types, including adipocytes and myocytes. Also, we provide details about the different types of co-culture systems and their applicability to the study of metabolic disease, drug development, and the role of secretory factors in cell signaling cascades. Therefore, this review provides details about the co-culture systems used to study the complex interactions between adipose and muscle cells in various environments, such as those that promote cell differentiation and growth and those used for drug development.

15.
FASEB J ; 34(9): 12289-12307, 2020 09.
Article in English | MEDLINE | ID: mdl-32701200

ABSTRACT

Given the rising evidence that gut malfunction including changes in the gut microbiota composition, plays a major role in the development of obesity and associated metabolic diseases, the exploring of novel probiotic bacteria with potential health benefits has attracted great attention. Recently Lactobacillus spp., exert potent anti-obesity effects by regulating key transcriptional and translational factors in adipose tissues. However, the molecular mechanism behind the anti-obesity effect of probiotics is not yet fully understood. Therefore, we investigated the effect of Lactobacillus plantarum A29 on the expression of adipogenic and lipogenic genes in 3T3-L1 adipocytes and high-fat diet (HFD)-fed mice. We observed that the treatment of 3T3-L1 adipocytes with the cell-free metabolites of L plantarum inhibited their differentiation and fat depositions via downregulating the key adipogenic transcriptional factors (PPAR-γ, C/EBP-α, and C/EBP-ß) and their downstream targets (FAS, aP2, ACC, and SREBP-1). Interestingly, supplementation with L plantarum reduced the fat mass and serum lipid profile concurrently with downregulation of lipogenic gene expression in the adipocytes, resulting in reductions in the bodyweight of HFD-fed obese mice. L plantarum treatment attenuated the development of obesity in HFD-fed mice via the activation of p38MAPK, p44/42, and AMPK-α by increasing their phosphorylation. Further analysis revealed that A29 modulated gut-associated microbiota composition. Thus, A 29 potential probiotic strain may alleviate the obesity development and its associated metabolic disorders via inhibiting PPARγ through activating the p38MAPK and p44/42 signaling pathways.


Subject(s)
Dysbiosis/therapy , Gastrointestinal Microbiome , Lactobacillus plantarum/physiology , Obesity/therapy , Probiotics/pharmacology , 3T3-L1 Cells , Adipocytes/metabolism , Animals , Cell Differentiation , Diet, High-Fat , Extracellular Signal-Regulated MAP Kinases/physiology , MAP Kinase Signaling System/physiology , Male , Mice , Mice, Inbred ICR , Obesity/metabolism , Obesity/microbiology , PPAR gamma/antagonists & inhibitors , p38 Mitogen-Activated Protein Kinases/physiology
16.
Microorganisms ; 8(7)2020 Jul 14.
Article in English | MEDLINE | ID: mdl-32674395

ABSTRACT

The objective of this study was to isolate and characterize lactic acid bacteria (LAB) with low carbohydrate tolerance from rumen fluid and to elucidate their probiotic properties and the quality of fermentation of Medicago sativa L. and Trifolium incarnatum L. silage in vitro. We isolated 39 LAB strains and screened for growth in MRS broth and a low-carbohydrate supplemented medium; among them, two strains, Lactiplantibacillus plantarum (Lactobacillus plantarum) RJ1 and Pediococcus pentosaceus S22, were able to grow faster in the low-carbohydrate medium. Both strains have promising probiotic characteristics including antagonistic activity against P. aeruginosa, E. coli, S. aureus, and E. faecalis; the ability to survive in simulated gastric-intestinal fluid; tolerance to bile salts; and proteolytic activity. Furthermore, an in vitro silage fermentation study revealed that alfalfa and crimson clover silage inoculated with RJ1 and S22 showed significantly decreased pH and an increased LAB population at the end of fermentation. Also, the highest lactic acid production was noted (p < 0.05) in LAB-inoculated silage vs. non-inoculated legume silage at high moisture. Overall, the data suggest that RJ1 and S22 could be effective strains for fermentation of legume silage.

17.
Microorganisms ; 7(9)2019 Sep 04.
Article in English | MEDLINE | ID: mdl-31487912

ABSTRACT

The purpose of this study was to identify potent lactic acid bacteria that could have a great impact on triticale silage fermentation at different moisture levels and determine their anti-bacterial activity and high probiotic potential. For this purpose, Pediococcus pentosaceus (TC48) and Lactobacillus brevis (TC50) were isolated from fermented triticale silage. The fermentation ability of these isolates in triticale powder was studied by an ensiling method. TC48 had higher ability to ferment silage powder by increasing the lactic acid content of silage than TC50. Extracellular supernatant (ECS) of TC48 and TC50 exhibited strong antibacterial effects (inhibition zone diameters: 18-28 mm) against tested cattle pathogenic bacteria with minimum inhibitory/ minimum bactericidal concentrations (MIC/MBC) values of 5.0-10 mg/mL and 10-20 mg/mL, respectively. Extracellular supernatant (ECS) of TC48 and TC50 showed antibacterial activities on E. coli, P. aeruoginosa, S. aureus and E. faecalis through destruction of membrane integrity as confirmed by decreased viability, and increased 260 nm absorbing material in culture filtrate of pathogenic bacteria exposed to ECS of both strains. TC48 and TC50 strains exhibited high tolerance to artificial gastric, duodenal and intestinal fluids. TC48 showed good hydrophobicity and auto-aggregations properties. TC48 and TC50 significantly co-aggregated with E. coli, P. aeruoginosa, S. aureus and E. faecalis in a time-dependent manner. In summary, all of the bacteria had a positive impact on at least one functional property of the silage during the fermentation process. However, the addition of P. pentosaceus (TC48) and L. brevis (TC50) yielded the greatest silage quality improvement, having high antibacterial and probiotic properties.

18.
Sci Rep ; 9(1): 9307, 2019 06 26.
Article in English | MEDLINE | ID: mdl-31243298

ABSTRACT

Formononetin (FN), a typical phytoestrogen has attracted substantial attention as a novel agent because of its diverse biological activities including, osteogenic differentiation. However, the molecular mechanisms underlying osteogenic and myogenic differentiation by FN in C2C12 progenitor cells remain unknown. Therefore the objective of the current study was to investigate the action of FN on myogenic and osteogenic differentiation and its impact on signaling pathways in C2C12 cells. FN significantly increased myogenic markers such as Myogenin, myosin heavy chains, and myogenic differentiation 1 (MyoD). In addition, the expression of osteogenic specific genes alkaline phosphatase (ALP), Run-related transcription factor 2(RUNX2), and osteocalcin (OCN) were up-regulated by FN treatment. Moreover, FN enhanced the ALP level, calcium deposition and the expression of bone morphogenetic protein isoform (BMPs). Signal transduction pathways mediated by p38 mitogen-activated protein kinase (p38MAPK), extracellular signal-related kinases (ERKs), protein kinase B (Akt), Janus kinases (JAKs), and signal transducer activator of transcription proteins (STATs) in myogenic and osteogenic differentiation after FN treatment were also examined. FN treatment activates myogenic differentiation by increasing p38MAPK and decreasing JAK1-STAT1 phosphorylation levels, while osteogenic induction was enhanced by p38MAPK dependent Smad, 1/5/8 signaling pathways in C2C12 progenitor cells.


Subject(s)
Isoflavones/pharmacology , Muscle Development/drug effects , Osteogenesis/drug effects , Phytoestrogens/pharmacology , Signal Transduction , Stem Cells/drug effects , Animals , Cell Differentiation , Cell Survival , Dose-Response Relationship, Drug , Janus Kinase 1/metabolism , Mice , STAT1 Transcription Factor/metabolism , Smad1 Protein/metabolism , Smad5 Protein/metabolism , Smad8 Protein/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
19.
Phytomedicine ; 60: 152873, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30879871

ABSTRACT

BACKGROUND: The dietary intake of plant-based supplements has a vital role in human health and development. However, the actions of secondary plant metabolites on cell growth, differentiation and their signaling mechanisms are still unclear. PURPOSE: In this study, we aim to investigate the C2C12 myoblast cells proliferation and differentiation by 4-hydroxy-3-methoxy cinnamic acid (=HMCA, ferulic acid) in a dose-dependent manner and to reveal its underlying mechanism of action. METHODS: The effect of HMCA on C2C12 cell proliferation and differentiation were evaluated by expression of BMP's marker genes (-2, -4, -6, -7) and related myogenic proteins were analyzed by quantitative PCR and western blot techniques, respectively. RESULTS: The in vitro findings confirmed that the HMCA upregulates BMPs (including BMP-2, -4, -6, and-7), gene expression in C2C12 skeletal muscle cells. Exposure to the lower dose of HMCA caused a significantly greater induction of myogenic differentiation than the higher dose during three- and six-day treatments. Further, the C2C12 myogenic differentiation signaling proteins MyoD, myogenin, JAK-1, -2, -3, STAT -2, -3, AMPK-α, ERK(1/2), and AKT were more preferentially activated by HMCA exposure cells than by untreated models. Thus, the experiment with inhibitors revealed that the HMCA induced muscle cell proliferation and differentiation through AKT and ERK (1/2) signaling cascades. Also, HMCA enhanced the C2C12 muscle cell differentiation protein markers such as myogenin, AKT and ERK (1/2) significantly (p ≤ 0.05) at day three in chemical inhibitors of LY 294002 and PD98056 treated samples. CONCLUSION: The HMCA has a significant effect on muscle cell differentiation through ERK(1/2) and AKT signaling activation. Also, the HMCA promotes C2C12 muscle cell proliferation and differentiation via activation of osteogenic genes and myogeneic protein markers. Therefore, this study suggests that the natural phenolic compound HMCA has a potent function in muscle cell proliferation, differentiation, and development.


Subject(s)
Cell Differentiation/drug effects , Cell Proliferation/drug effects , Coumaric Acids/pharmacology , MAP Kinase Signaling System/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Animals , Biomarkers/metabolism , Bone Morphogenetic Proteins/genetics , Bone Morphogenetic Proteins/metabolism , Cell Line , Gene Expression Regulation/drug effects , Humans , Mice , Muscle Development/drug effects , Muscle Fibers, Skeletal/drug effects , Myoblasts/drug effects , Osteogenesis/drug effects , Proto-Oncogene Proteins c-akt/genetics
20.
Int. microbiol ; 22(1): 121-130, mar. 2019. ilus, graf, tab
Article in English | IBECS | ID: ibc-184820

ABSTRACT

The aim of the present study was to isolate novel lactic acid bacteria (LAB) from hairy vetch forage crop and characterize their probiotic and fermentative potential for preparing Korean cabbage kimchi. First, functional characterization of isolated strains such as antagonistic property, auto-aggregation, antibiotic susceptibility, and extracellular enzyme production was performed. The isolated Lactobacillus plantarum KCC-41 strain was able to inhibit pathogenic fungal spore formation. It showed susceptibility to common commercial antibiotics drugs. The selected LAB strain was then subjected to microencapsulation with alginate biopolymer. Its ability to survive in in vitro simulated gastro-intestinal fluid was evaluated. It was also used in the fermentation of cabbage kimchi samples. The encapsulated KCC-41 strain could effectively lead to kimchi fermentation in terms of reducing its pH and dominating bacterial count. It also significantly increased organic acid production than non-encapsulated LAB (KCC-41) for cabbage kimchi samples


No disponible


Subject(s)
Brassica/microbiology , Cells, Immobilized/metabolism , Food Microbiology , Probiotics/metabolism , Endophytes/isolation & purification , Lactobacillus plantarum/isolation & purification , Vicia/microbiology , Drug Compounding , Endophytes/metabolism , Lactobacillus plantarum/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...