Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Thromb Res ; 230: 133-143, 2023 10.
Article in English | MEDLINE | ID: mdl-37717370

ABSTRACT

Activated platelets provide phospholipid surface and secrete coagulation factors, enhancing blood clotting. We investigated the role of platelets in the regulation of blood coagulation spatial dynamics. We activated blood clotting with tissue factor-bearing (TF) surface in platelet-rich plasma (PRP) or platelet-free plasma (PFP). When blood coagulation was initiated by high TF density, clot growth rate (V) in PRP (2 × 105/µL platelets) was only 15 % greater than in PFP. Spatial distribution of thrombin in PRP had a peak-like shape in the area of the fibrin clot edge, while in PFP thrombin was distributed in the shape of descending plateau. Platelet inhibition with prostaglandin E1 or cytochalasin D made spatial thrombin distribution look like in the case of PFP. Inhibition of blood coagulation by natural endogenous inhibitor heparin was diminished in PRP, while the effect of the exogenous or artificial inhibitors (rivaroxaban, nitrophorin, hirudin) remained undisturbed in the presence of platelets. Ten times decrease of the TF surface density greatly depressed blood coagulation in PFP. In PRP only clotting initiation phase was, while the propagation phase remained intact. Coagulation factor deficiency greatly reduced amount of thrombin and decreased V in PFP rather than in PPR. Thus, platelets were redundant for clotting in normal plasma under physiological conditions but provided robustness of the coagulation system to the changes in initial conditions.


Subject(s)
Platelet-Rich Plasma , Thrombosis , Humans , Thrombin/pharmacology , Blood Coagulation , Blood Platelets/physiology , Blood Coagulation Factors , Thromboplastin
2.
Platelets ; 32(8): 1031-1037, 2021 Nov 17.
Article in English | MEDLINE | ID: mdl-32967497

ABSTRACT

In this work, we present a new method-Thrombodynamics-4D-for the assessment of both plasma and platelet contributions to clotting. Thrombodynamics-4D potentially allows for the determination of plasma or platelet disorders and the effects of various drugs on plasma clotting or on platelet procoagulant function. In this assay, clot formation in platelet-rich plasma or platelet-free plasma supplemented with phospholipids is activated with tissue factor immobilized on a surface. Spatial fibrin clot growth and thrombin concentration dynamics are registered by measuring light scattering of the fibrin clot and fluorescence of the product formed by cleavage of the synthetic fluorogenic substrate by thrombin, respectively. Here, we describe the preanalytical requirements, measurement methodology and calculation principles of assay parameters. Preanalytical and analytical variability and reference ranges of the assay are given. Additionally, we show some clinical examples, which determine the effect of anticoagulants, measure clotting dysfunction in patients with platelet or coagulation disorders and evaluate the effect of surgery.


Subject(s)
Blood Coagulation Tests/methods , Blood Coagulation/physiology , Fibrin/metabolism , Phospholipids/metabolism , Thrombin/metabolism , Humans
3.
Pediatr Res ; 85(1): 63-71, 2019 01.
Article in English | MEDLINE | ID: mdl-30283046

ABSTRACT

BACKGROUND: Preterm newborns are at thrombohemorrhagic risk during the early neonatal period. Taking into account the lack of informative tools for the laboratory diagnosis of hemostasis disorders in newborns, our goal was to determine the baseline values of thrombodynamics and platelet functional activity in healthy term and moderately preterm newborns during the early neonatal period future potential clinical use of these tests. METHODS: Coagulation was assessed using an integral assay of thrombodynamics and standard coagulation assays, and platelet functional activity was estimated by flow cytometry. RESULTS: Hypercoagulation of newborns, represented by a significantly higher clot growth velocity and the presence of spontaneous clots in the thrombodynamics, was combined with platelet hypoactivity. Granule release, phosphatidylserine exposure, and the ability to change shape upon activation were decreased in the platelets of moderately preterm newborns. The platelet function remained at the same level over the first four days of life, whereas the hypercoagulation became less pronounced. CONCLUSIONS: The hemostasis of newborns is characterized by hypercoagulation combined with reduced platelet functional activity. Moderately preterm and term newborns do not differ in the parameters of coagulation, while some of the functional responses of platelets are lower in moderately preterm newborns than in term.


Subject(s)
Blood Coagulation , Blood Platelets/metabolism , Infant, Premature/blood , Platelet Activation , Premature Birth , Thrombophilia/blood , Biomarkers/blood , Female , Gestational Age , Humans , Infant, Newborn , Male , P-Selectin/blood , Phosphatidylserines/blood , Term Birth , Thrombophilia/diagnosis
4.
Biophys J ; 115(12): 2461-2473, 2018 12 18.
Article in English | MEDLINE | ID: mdl-30514632

ABSTRACT

Blood coagulation is a delicately regulated space- and time-dependent process that leads to the formation of fibrin clots preventing blood loss upon vascular injury. The sensitivity of the coagulation network was previously investigated without accounting for transport processes. To investigate its sensitivity to coagulation factor deficiencies in a spatial reaction-diffusion system, we combined an in vitro experimental design with a computational systems biology model. Clot formation in platelet-free plasma supplemented with phospholipids was activated with identical amounts of tissue factor (TF) either homogeneously distributed (concentration 5 pM, homogeneous model) or immobilized on the surface (surface density 100 pmole/m2, spatially heterogeneous model). Fibrin clot growth and thrombin concentration dynamic in space were observed using video microscopy in plasma of healthy donors or patients with deficiencies in factors (F) II, FV, FVII, FVIII, FIX, FX, or FXI. In the spatially heterogeneous model, near-activator thrombin generation was decreased in FV-, FVII-, and FX-deficient plasma. In the homogeneous model, clotting was not registered in these samples. The simulation and experiment data showed that the coagulation threshold depended on the TF concentration. Our data indicate that the velocity of spatial clot propagation correlates linearly with the concentration of thrombin at the clot wave front but not with the overall thrombin wave amplitude. Spatial clot growth in normal plasma at early stages was neither reaction nor diffusion limited but became diffusion limited later. In contrast, clot growth was always diffusion limited in FV-, FVII-, and FX-deficient plasma and reaction limited in FVIII-, FIX-, and FXI-deficient plasma. We conclude that robustness of the spatially heterogeneous coagulation system was achieved because of the combination of 1) a local high TF surface density that overcomes activation thresholds, 2) diffusion control being shared between different active factors, and 3) an early saturated stimulus-response dependence of fibrin clot formation by thrombin.


Subject(s)
Blood Coagulation , Fibrin/metabolism , Models, Biological , Thrombin/metabolism , Blood Coagulation Factors/metabolism , Diffusion , Humans , Kinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...