Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Plants (Basel) ; 12(7)2023 Apr 06.
Article in English | MEDLINE | ID: mdl-37050194

ABSTRACT

The intracellular accumulation of inorganic carbon (Ci) by microalgae and cyanobacteria under ambient atmospheric CO2 levels was first documented in the 80s of the 20th Century. Hence, a third variety of the CO2-concentrating mechanism (CCM), acting in aquatic photoautotrophs with the C3 photosynthetic pathway, was revealed in addition to the then-known schemes of CCM, functioning in CAM and C4 higher plants. Despite the low affinity of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) of microalgae and cyanobacteria for the CO2 substrate and low CO2/O2 specificity, CCM allows them to perform efficient CO2 fixation in the reductive pentose phosphate (RPP) cycle. CCM is based on the coordinated operation of strategically located carbonic anhydrases and CO2/HCO3- uptake systems. This cooperation enables the intracellular accumulation of HCO3-, which is then employed to generate a high concentration of CO2 molecules in the vicinity of Rubisco's active centers compensating up for the shortcomings of enzyme features. CCM functions as an add-on to the RPP cycle while also acting as an important regulatory link in the interaction of dark and light reactions of photosynthesis. This review summarizes recent advances in the study of CCM molecular and cellular organization in microalgae and cyanobacteria, as well as the fundamental principles of its functioning and regulation.

2.
J Biotechnol ; 344: 11-23, 2022 Jan 20.
Article in English | MEDLINE | ID: mdl-34921977

ABSTRACT

Several forms of EcaA protein, correspondent to the extracellular α-class carbonic anhydrase (CA) of cyanobacterium Crocosphaera subtropica ATCC 51142 were expressed in Escherichia coli. The recombinant proteins with no leader peptide (EcaA and its fusion with thioredoxin or glutathione S-transferase) were allocated inside cells in a full-length form; these cells did not display any extracellular CA activity. Soluble proteins (including that of periplasmic space) of E. coli cells that expressed both ЕсаА equipped with its native leader peptide (L-EcaA) as well as L-EcaA fused with thioredoxin or glutathione S-transferase at N-terminus, mainly contained the processed EcaA. The appearance of mature ЕсаА in outer layers of E. coli cells expressed leader peptide-containing forms of recombinant proteins, has been directly confirmed by immunofluorescent microscopy. Those cells also displayed high extracellular CA activity. In addition, the mature EcaA protein was detected in the culture medium. This suggests that cyanobacterial signal peptide is recognized by the secretory machinery and by the leader peptidase of E. coli even as a part of a fusion protein. The efficiency of EcaA leader peptide was comparable to that of PelB and TorA signal peptides, commonly used for biotechnological production of extracellular recombinant proteins in E. coli.


Subject(s)
Carbonic Anhydrases , Cyanobacteria/enzymology , Protein Sorting Signals , Recombinant Proteins/biosynthesis , Carbonic Anhydrases/genetics , Carbonic Anhydrases/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Periplasm/metabolism , Recombinant Proteins/genetics
3.
FEMS Microbiol Ecol ; 97(8)2021 07 22.
Article in English | MEDLINE | ID: mdl-34254131

ABSTRACT

Filamentous cyanobacteria belonging to the 'marine Geitlerinema' cluster are spread worldwide in saline environments and considered to play an important ecological role. However, the taxonomy of this group remains unclear. Here, we analyzed the phylogeny, ecology and biogeography of the 'marine Geitlerinema' cluster representatives and revealed two subclusters: (1) an 'oceanic' subcluster containing PCC7105 clade and black band disease (BBD) clade with free-living and pathogenic strains distributed in Atlantic, Indian and Pacific Ocean-related localities, and (2) a Sodalinema subcluster containing free-living strains from marine, hypersaline, saline-alkaline and soda lake habitats from the Eurasian and African continents. Polyphasic analysis using genetic and phenotypic criteria demonstrated that these two groups represent separate genera. Representatives of Sodalinema subcluster were phylogenetically attributed to the genus Sodalinema. Our data expand the ecological and geographical distribution of this genus. We emended the description of the genus Sodalinema and proposed three new species differing in phylogenetic, geographic and ecological criteria: Sodalinema orleanskyi sp. nov., Sodalinema gerasimenkoae sp. nov. and Sodalinema stali sp. nov. Additionally, a new genus and species Baaleninema simplex gen. et sp. nov. was discribed within the PCC7105 clade. By this, we put in order the current confusion of the 'marine Geitlerinema' group and highlight its ecological diversity.


Subject(s)
Cyanobacteria , Bacterial Typing Techniques , Cyanobacteria/genetics , DNA, Bacterial , Pacific Ocean , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
4.
Gene ; 764: 145055, 2021 Jan 05.
Article in English | MEDLINE | ID: mdl-32882332

ABSTRACT

Cyanobacteria are model photosynthetic prokaryotic organisms often used in biotechnology to produce biofuels including alcohols. The effect of alcohols on cyanobacterial cell physiology and specifically on membrane fluidity is poorly understood. Previous research on various primary aliphatic alcohols found that alcohols with a short hydrocarbon chain (C1-C3) do not affect expression of genes related to membrane physical state. In addition, less water-soluble alcohols with a hydrocarbon chain longer than C8 are found to have a reduced ability to reach cellular membranes hence do not drastically change membrane physical state or induce expression of stress-responsive genes. Therefore, hexan-1-ol (C6) is suggested to have the most profound effect on cyanobacterial membrane physical state. Here, we studied the effects of hexan-1-ol on the cyanobacterium Synechocystis sp. PCC 6803 transcriptome. The transcriptome data obtained is compared to the previously reported analysis of gene expression induced by benzyl alcohol and butan-1-ol. The set of genes whose expression is induced after exposure to all three studied alcohols is identified. The expression under alcohol stress for several general stress response operons is analyzed, and examples of antisense interactions of RNA are investigated.


Subject(s)
Cell Membrane/drug effects , Gene Expression Regulation, Bacterial/drug effects , Hexanols/toxicity , Stress, Physiological/genetics , Synechocystis/genetics , 1-Butanol/toxicity , Benzyl Alcohol/toxicity , Operon/drug effects , Operon/genetics , RNA, Antisense/genetics , RNA, Antisense/metabolism , RNA-Seq , Stress, Physiological/drug effects , Synechocystis/drug effects , Transcriptome/drug effects
5.
Microbiol Resour Announc ; 8(15)2019 Apr 11.
Article in English | MEDLINE | ID: mdl-30975816

ABSTRACT

A new presumably simple consortium of a Leptolyngbya sp. and a Porphyrobacter sp. was isolated from Tolbo Lake in Mongolia. The draft genome sequences of both species are reported. The consortium has been deposited in the Collection of Microalgae and Cyanobacteria of the Institute of Plant Physiology, Moscow, Russia, under the accession number IPPAS B-1204.

6.
Biochimie ; 160: 200-209, 2019 May.
Article in English | MEDLINE | ID: mdl-30898645

ABSTRACT

Here, for the first time, we report the presence of highly active extracellular carbonic anhydrase (CA) of α-class in cyanobacterial cells. The enzyme activity was confirmed both in vivo in intact cells and in vitro, using the recombinant protein. CA activity in intact cells of Cyanothece sp. ATCC 51142 reached ∼0.6 Wilbur-Anderson units (WAU) per 1 mg of total cell protein, and it was inhibited by a specific CAs inhibitor, ethoxyzolamide. The genes cce_4328 (ecaA) and cce_0871 (ecaB), encoding two potential extracellular CAs of Cyanothece have been cloned, and the corresponding proteins EcaA and EcaB, representing CAs of α- and ß-class, respectively, have been heterologously expressed in Escherichia coli. High specific activity (∼1.1 × 104 WAU per 1 mg of target protein) was detected for the recombinant EcaA only. The presence of EcaA in the outer cellular layers of Cyanothece was confirmed by immunological analysis with antibodies raised against the recombinant protein. The absence of redox regulation of EcaA activity indicates that this protein does not possess a disulfide bond essential for some α-class CAs. The content and activity of EcaA in a fraction of periplasmic proteins was higher in Cyanothece cells grown at ambient concentration of CO2 (0.04%) compared to those grown at an elevated CO2 concentration (1.7%). At the same time, the level of ecaA gene mRNA varied insignificantly in response to changes in CO2 supply. Our results indicate that EcaA is responsible for CA activity of intact Cyanothece cells and point to its possible physiological role under low-CO2 conditions.


Subject(s)
Bacterial Proteins/metabolism , Carbon Dioxide/metabolism , Carbonic Anhydrases/metabolism , Cyanothece/enzymology , Extracellular Space/enzymology , Recombinant Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/isolation & purification , Carbonic Anhydrases/genetics , Carbonic Anhydrases/isolation & purification , Cloning, Molecular , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification
7.
Microbiology (Reading) ; 164(4): 576-586, 2018 04.
Article in English | MEDLINE | ID: mdl-29485398

ABSTRACT

Carbonic anhydrase (CA) EcaA of Synechococcus elongatus PCC 7942 was previously characterized as a putative extracellular α-class CA, however, its activity was never verified. Here we show that EcaA possesses specific CA activity, which is inhibited by ethoxyzolamide. An active EcaA was expressed in heterologous bacterial system, which supports the formation of disulfide bonds, as a full-length protein (EcaA+L) and as a mature protein that lacks a leader peptide (EcaA-L). EcaA-L exhibited higher specific activity compared to EcaA+L. The recombinant EcaA, expressed in a bacterial system that does not support optimal disulfide bond formation, exhibited extremely low activity. This activity, however, could be enhanced by the thiol-oxidizing agent, diamide; while a disulfide bond-reducing agent, dithiothreitol, further inactivated the enzyme. Intact E. coli cells that overexpress EcaA+L possess a small amount of processed protein, EcaA-L, whereas the bulk of the full-length protein resides in the cytosol. This may indicate poor recognition of the EcaA leader peptide by protein export systems. S. elongatus possessed a relatively low level of ecaA mRNA, which varied insignificantly in response to changes in CO2 supply. However, the presence of protein in the cells is not obvious. This points to the physiological insignificance of EcaA in S. elongatus, at least under the applied experimental conditions.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Carbonic Anhydrases/chemistry , Carbonic Anhydrases/metabolism , Synechococcus/enzymology , Amino Acid Sequence , Bacterial Proteins/genetics , Carbon Dioxide/metabolism , Carbonic Anhydrases/genetics , Cytoplasm/metabolism , Disulfides , Escherichia coli/enzymology , Escherichia coli/genetics , Protein Sorting Signals , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Synechococcus/genetics , Temperature
8.
Genome Announc ; 6(5)2018 Feb 01.
Article in English | MEDLINE | ID: mdl-29437103

ABSTRACT

We report here two draft cyanobacterial genome sequences, those of Cyanobacterium aponinum IPPAS B-1201, isolated from a hot spring in the Turgen Gorge (Kazakhstan), and the uncharacterized cyanobacterium IPPAS B-1203, isolated from a hot spring in Karlovy Vary (Czech Republic). These two strains were deposited at the Collection of Microalgae (IPPAS) of the Timiryazev Institute of Plant Physiology.

9.
FEMS Microbiol Lett ; 364(4)2017 02 01.
Article in English | MEDLINE | ID: mdl-28130365

ABSTRACT

A cyanobacterial strain from Lake Shar-Nuur, a freshwater lake in Mongolia, was isolated and characterized by a polyphasic approach. According to the 16S ribosomal RNA gene sequence, this strain (IPPAS B-1220) belongs to a newly described genus Desertifilum. In general, strains of Desertifilum maintain their genetic stability, as seen from the analysis of the 16S rRNA gene and 16S-23S rRNA internal transcribed spacer sequences from strains collected at distant locations. The newly discovered strain is characterized by an unusual fatty acid composition (16:1Δ7 and 16:2Δ7,10). Analysis of its draft genomic sequence reveals the presence of six genes for the acyl-lipid desaturases: two Δ9-desaturases, desC1 and desC2; two Δ12-desaturases, desA1 and desA2; one desaturase of unknown specificity, desX; and one gene for the bacillary-type desaturase, desG, which supposedly encodes an ω9-desaturase. A scheme for a fatty acid desaturation pathway that describes the biosynthesis of 16:1Δ7 and 16:2Δ7,10 fatty acids in Desertifilum is proposed.


Subject(s)
Cyanobacteria/genetics , Cyanobacteria/physiology , Thermotolerance , Bacterial Typing Techniques , Cyanobacteria/chemistry , Cyanobacteria/classification , DNA, Bacterial/genetics , Fatty Acid Desaturases/genetics , Fatty Acids/chemistry , Fresh Water/microbiology , Lakes/microbiology , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
10.
Genome Announc ; 4(6)2016 Nov 17.
Article in English | MEDLINE | ID: mdl-27856594

ABSTRACT

Here, we report the draft genome of the filamentous cyanobacterium Desertifilum sp. strain IPPAS B-1220, isolated from Lake Shar-Nuur, Mongolia. The genome of 6.1 Mb codes for 5,113 genes. Genome mining revealed 10 clusters for the synthesis of bioactive compounds (nonribosomal peptides, polyketides, bacteriocins, and lantipeptides) with potential biotechnological or medical importance.

11.
Genome Announc ; 4(6)2016 Nov 17.
Article in English | MEDLINE | ID: mdl-27856596

ABSTRACT

Here, we report the draft genome of Cyanobacterium sp. IPPAS strain B-1200, isolated from Lake Balkhash, Kazakhstan, and characterized by the unique fatty acid composition of its membrane lipids, which are enriched with myristic and myristoleic acids. The approximate genome size is 3.4 Mb, and the predicted number of coding sequences is 3,119.

12.
Photosynth Res ; 130(1-3): 151-165, 2016 Dec.
Article in English | MEDLINE | ID: mdl-26908147

ABSTRACT

At present geological epoch, the carbon concentrating mechanism (CCM) of cyanobacteria represents the obligatory tool for adaptation to low content of CO2 in the atmosphere and for the maintenance of sufficient photosynthetic activity. Functional CCM was found in modern cyanobacteria from different ecological niches. However, the presence of such mechanism in species that inhabit soda lakes is not obvious due to high content of inorganic carbon (C i) in the environment. Here we analyze CCM components that have been identified by sequencing of the whole genome of the alkaliphilic cyanobacterium Microcoleus sp. IPPAS B-353. The composition of the CCM components of Microcoleus is similar to that of 'model' ß-cyanobacteria, freshwater and marine Synechococcus or Synechocystis spp. However, CahB1 protein of Microcoleus, which is the homolog of CcaA, the carboxysomal ß-type carbonic anhydrase (CA) of ß-cyanobacteria, appeared to be the only active CA located in cell envelopes. The conservative regions of CcmM, CahG (a homolog of archeal γ-CAs, Cam/CamH), and ChpX of Microcoleus possess single amino acid substitutions that may cause a lack of CA activities. Unlike model cyanobacteria, Microcoleus induces only one BicA-type bicarbonate transporter in response to C i limitation. The differences in the appearance of CCM components and in their characteristics between alkaliphilic Microcoleus and freshwater or marine cyanobacteria are described. The possible reasons for the maintenance of CCM components in cyanobacteria, which permanently live at high concentrations of C i in soda lakes, are discussed.


Subject(s)
Carbon Dioxide/metabolism , Cyanobacteria/genetics , Genome, Bacterial/genetics , Blotting, Western , Carbon/metabolism , Carbonic Anhydrases/genetics , Carbonic Anhydrases/metabolism , Cyanobacteria/metabolism , Electrophoresis, Polyacrylamide Gel , Genes, Bacterial/genetics , RNA, Bacterial/genetics , Sequence Alignment
13.
Photosynth Res ; 130(1-3): 11-17, 2016 Dec.
Article in English | MEDLINE | ID: mdl-26719062

ABSTRACT

High affinity transport of manganese ions (Mn2+) in cyanobacteria is carried by an ABC-type transporter, encoded by the mntCAB operon, which is derepressed by the deficiency of Mn2+. Transcription of this operon is negatively regulated by the two-component system consisting of a sensory histidine kinase ManS and DNA-binding response regulator ManR. In this study, we examined two Synechocystis mutants, defective in ManS and ManR. These mutants were unable to grow on high concentrations of manganese. Furthermore, they were sensitive to high light intensity and unable to recover after short-term photoinhibition. Under standard illumination and Mn2+ concentration, mutant cells revealed the elevated levels of transcripts of genes involved in the formation of Photosystem II (psbA, psbD, psbC, pap-operon). This finding suggests that, in mutant cells, the PSII is sensitive to high concentrations of Mn2+ even at relatively low light intensity.


Subject(s)
ATP-Binding Cassette Transporters/physiology , Manganese/metabolism , Plant Proteins/physiology , Synechocystis/physiology , ATP-Binding Cassette Transporters/genetics , Mutation , Photosystem II Protein Complex/physiology , Photosystem II Protein Complex/radiation effects , Plant Proteins/genetics , Synechocystis/genetics , Synechocystis/radiation effects
14.
J Biol Chem ; 290(47): 28502-28514, 2015 Nov 20.
Article in English | MEDLINE | ID: mdl-26405033

ABSTRACT

Cyanobacteriochromes (CBCRs), which are exclusive to and widespread among cyanobacteria, are photoproteins that sense the entire range of near-UV and visible light. CBCRs are related to the red/far-red phytochromes that utilize linear tetrapyrrole (bilin) chromophores. Best characterized from the unicellular cyanobacterium Synechocystis sp. PCC 6803 and the multicellular heterocyst forming filamentous cyanobacteria Nostoc punctiforme ATCC 29133 and Anabaena sp. PCC 7120, CBCRs have been poorly investigated in mat-forming, nonheterocystous cyanobacteria. In this study, we sequenced the genome of one of such species, Microcoleus IPPAS B353 (Microcoleus B353), and identified two phytochromes and seven CBCRs with one or more bilin-binding cGMP-specific phosphodiesterase, adenylyl cyclase and FhlA (GAF) domains. Biochemical and spectroscopic measurements of 23 purified GAF proteins from phycocyanobilin (PCB) producing recombinant Escherichia coli indicated that 13 of these proteins formed near-UV and visible light-absorbing covalent adducts: 10 GAFs contained PCB chromophores, whereas three contained the PCB isomer, phycoviolobilin (PVB). Furthermore, the complement of Microcoleus B353 CBCRs is enriched in near-UV and violet sensors, but lacks red/green and green/red CBCRs that are widely distributed in other cyanobacteria. We hypothesize that enrichment in short wavelength-absorbing CBCRs is critical for acclimation to high-light environments where this organism is found.


Subject(s)
Bacterial Proteins/genetics , Cyanobacteria/genetics , Genome, Bacterial , Ultraviolet Rays , Cyanobacteria/metabolism , Photobiology
15.
Bioorg Med Chem ; 22(5): 1667-71, 2014 Mar 01.
Article in English | MEDLINE | ID: mdl-24529310

ABSTRACT

We investigated the catalytic activity and inhibition of the ß-class carbonic anhydrase (CA, EC 4.2.1.1) CahB1, from the relict cyanobacterium Coleofasciculus chthonoplastes (previously denominated Microcoleus chthonoplastes). The enzyme showed good activity as a catalyst for the CO2 hydration, with a kcat of 2.4 × 10(5)s(-1) and a kcat/Km of 6.3 × 10(7)M(-1)s(-1). A range of inorganic anions and small molecules were investigated as inhibitors of CahB1. Perchlorate and tetrafluoroborate did not inhibit the enzyme (KIs >200 mM) whereas selenate and selenocyanide were ineffective inhibitors too, with KIs of 29.9-48.61 mM. The halides, pseudohalides, carbonate, bicarbonate, trithiocarbonate and a range of heavy metal ions-containing anions were submillimolar-millimolar inhibitors (KIs in the range of 0.15-0.90 mM). The best CahB1 inhibitors were N,N-diethyldithiocarbamate, sulfamate, sulfamide, phenylboronic acid and phenylarsonic acid, with KIs in the range of 8-75 µM, whereas acetazolamide inhibited the enzyme with a KI of 76 nM. This is the first kinetic and inhibition study of a cyanobacterial CA. As these enzymes are widespread in many cyanobacteria, being crucial for the carbon concentrating mechanism which assures substrate to RubisCO for the CO2 fixation by these organisms, a detailed kinetic/inhibition study may be essential for a better understanding of this superfamily of metalloenzymes and for potential biotechnological applications in biomimetic CO2 capture processes.


Subject(s)
Anions/chemistry , Carbonic Anhydrase Inhibitors/chemistry , Carbonic Anhydrases/chemistry , Cyanobacteria/metabolism , Amino Acid Sequence , Molecular Sequence Data
16.
J Photochem Photobiol B ; 137: 156-67, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24418071

ABSTRACT

Thirty novel chemical compounds were designed and synthesized expecting that they would be possible inhibitors. From this number eleven were organic bases, twenty-four were their organic derivatives and fourteen were metal complexes. Screening of these chemicals by their action on photosynthetic electron transfer (PET) and carbonic anhydrase (CA) activity (CAA) of photosystem II (PSII), α-CA, as well as ß-CA was done. Several groups were revealed among them. Some of them are capable to suppress either one, two, three, or even all of the measured activities. As example, one of the Cu(II)-phenyl sulfonylhydrazone complexes (compound 25) suppresses CAA of α-CA by 88%, CAA of ß-CA by 100% inhibition; CAA of PSII by 100% and the PSII photosynthetic activity by 66.2%. The Schiff base compounds (12, 15) and Cu(II)-phenyl sulfonylhydrazone complexes (25, 26) inhibited the CAA and PET of PSII significantly. The obtained data indicate that the PSII donor side is a target of the inhibitory action of these agents. Some physico- or electrochemical properties such as diffusion coefficient, number of transferred electrons, peak potential and heterogeneous standard rate constants of the compounds were determined in nonaqueous media. pKa values were also determined in nonaqueous and aqueous media. Availability in the studied group of novel chemical agents possessing different inhibitory activity allow in future to isolate the "active part" in the structure of the inhibitors responsible for different inhibitory mechanisms, as well as to determine the influence of side substituters on its inhibitory efficiency.


Subject(s)
Carbonic Anhydrase Inhibitors/pharmacology , Carbonic Anhydrases/metabolism , Photosynthesis/drug effects , Photosystem II Protein Complex/antagonists & inhibitors , Photosystem II Protein Complex/metabolism , Drug Evaluation, Preclinical , Electrochemistry , Organometallic Compounds/pharmacology , Pisum sativum/enzymology , Photochemical Processes , Photosystem II Protein Complex/chemistry
17.
Photosynth Res ; 117(1-3): 133-46, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23733616

ABSTRACT

The cellular and molecular organization of the CO2-concentrating mechanism (CCM) of cyanobacteria is reviewed. The primary processes of uptake, translocation, and accumulation of inorganic carbon (Ci) near the active site of carbon assimilation by the enzyme ribulose-1,5-bisphosphate carboxylase in the C3 cycle in cyanobacteria are described as one of the specialized forms of CO2 concentration which occurs in some photoautotrophic cells. The existence of this form of CO2 concentration expands our understanding of photosynthetic Ci assimilation. The means of supplying Ci to the C3 cycle in cyanobacteria is not by simple diffusion into the cell, but it is the result of coordinated functions of high-affinity systems for the uptake of CO2 and bicarbonate, as well as intracellular CO2/HCO3 (-) interconversions by carbonic anhydrases. These biochemical events are under genetic control, and they serve to maintain cellular homeostasis and adaptation to CO2 limitation. Here we describe the organization of the CCM in cyanobacteria with a special focus on the CCM of relict halo- and alkaliphilic cyanobacteria of soda lakes. We also assess the role of the CCM at the levels of the organism, the biosphere, and evolution.


Subject(s)
Biological Evolution , Carbon Dioxide/metabolism , Cyanobacteria/physiology , Photosynthesis , Carbon/metabolism , Microalgae/physiology
18.
Biochim Biophys Acta ; 1817(8): 1248-55, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22709623

ABSTRACT

The distribution of the luminal carbonic anhydrase Cah3 associated with thylakoid membranes in the chloroplast and pyrenoid was studied in wild-type cells of Chlamydomonas reinhardtii and in its cia3 mutant deficient in the activity of the Cah3 protein. In addition, the effect of CO(2) concentration on fatty acid composition of photosynthetic membranes was examined in wild-type cells and in the cia3 mutant. In the cia3 mutant, the rate of growth was lower as compared to wild-type, especially in the cells grown at 0.03% CO(2). This might indicate a participation of thylakoid Cah3 in the CO(2)-concentrating mechanism (CCM) of chloroplast and reflect the dysfunction of the CCM in the cia3 mutant. In both strains, a decrease in the CO(2) concentration from 2% to 0.03% caused an increase in the content of polyunsaturated fatty acids in membrane lipids. At the same time, in the cia3 mutant, the increase in the majority of polyunsaturated fatty acids was less pronounced as compared to wild-type cells, whereas the amount of 16:4ω3 did not increase at all. Immunoelectron microscopy demonstrated that luminal Cah3 is mostly located in the thylakoid membranes that pass through the pyrenoid. In the cells of CCM-mutant, cia3, the Cah3 protein was much less abundant, and it was evenly distributed throughout the pyrenoid matrix. The results support our hypothesis that CO(2) might be generated from HCO(3)(-) by Cah3 in the thylakoid lumen with the following CO(2) diffusion into the pyrenoid, where the CO(2) fixing Rubisco is located. This ensures the maintenance of active photosynthesis under CO(2)-limiting conditions, and, as a result, the active growth of cells. The relationships between the induction of CCM and restructuring of the photosynthetic membranes, as well as the involvement of the Cah3 of the pyrenoid in these events, are discussed. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.


Subject(s)
Carbonic Anhydrases/physiology , Chlamydomonas reinhardtii/enzymology , Thylakoids/enzymology , Carbon Dioxide/metabolism , Chlamydomonas reinhardtii/growth & development , Chlamydomonas reinhardtii/ultrastructure , Chloroplasts/ultrastructure , Fatty Acids/analysis , Photosynthesis
19.
J Photochem Photobiol B ; 103(1): 78-86, 2011 Apr 04.
Article in English | MEDLINE | ID: mdl-21330147

ABSTRACT

The gene for ß-class carbonic anhydrase (CA), which was designated as cahB1, was cloned from the genomic library of the alkaliphilic cyanobacterium Microcoleus chthonoplastes. The product of the cahB1 gene was expressed in Escherichia coli. The protein revealed high specific activity of CA, which was inhibited with ethoxyzolamide. The maximum activity of the recombinant CA was detected at alkaline pH (∼9.0) and its minimum - at neutral pH (∼7.0). Western blotting analysis with the antibodies raised against the recombinant CahB1 protein revealed its localization in cell envelopes of M. chthonoplastes. Immunocytochemical localization of the CahB1 in cells confirmed its extracellular location. The newly characterized CahB1 of Microcoleus was similar in amino acid and nucleotide sequences to well known ß-CAs of Synechococcus sp. PCC 7942 (IcfA) and Synechocystis sp. PCC 6803 (CcaA), although those CAs were attributed to the carboxysomal shells of cyanobacteria. Previously we have reported ß-class CA which was associated with PS II of alkaliphilic cyanobacteria. Here we first report extracellular localization of ß-class CA and provide a scheme for its possible involvement in the maintenance of a balance between external sources of inorganic carbon and photosynthesis in extreme environments of soda lakes.


Subject(s)
Carbonic Anhydrases/metabolism , Cyanobacteria/cytology , Cyanobacteria/enzymology , Extracellular Space/enzymology , Amino Acid Sequence , Carbon/metabolism , Carbon Dioxide/metabolism , Carbonic Anhydrases/chemistry , Carbonic Anhydrases/genetics , Carbonic Anhydrases/isolation & purification , Cloning, Molecular , Cyanobacteria/metabolism , Molecular Sequence Data , Photosynthesis , Protein Transport , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Thioredoxins/genetics
20.
Biochim Biophys Acta ; 1767(6): 616-23, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17292848

ABSTRACT

The organization of carbonic anhydrase (CA) system in halo- and alkaliphilic cyanobacterium Rhabdoderma lineare was studied by Western blot analysis and immunocytochemical electron microscopy. The presence of putative extracellular alpha-CA of 60 kDa in the glycocalyx, forming a tight sheath around the cell, and of two intracellular beta-CA is reported. We show for the first time that the beta-CA of 60 kDa is expressed constitutively and associated with polypeptides of photosystem II (beta-CA-PS II). Another soluble beta-CA of 25 kDa was induced in low-bicarbonate medium. Induction of synthesis of the latter beta-CA was accompanied by an increase in the intracellular pool of inorganic carbon, which suggests an important role of this enzyme in the functioning of a CO(2)-concentrating mechanism.


Subject(s)
Carbon/metabolism , Carbonic Anhydrases/analysis , Cyanobacteria/cytology , Cyanobacteria/metabolism , Photosystem II Protein Complex/chemistry , Thylakoids/enzymology , Alkalies/metabolism , Carbonic Anhydrases/classification , Carbonic Anhydrases/metabolism , Carbonic Anhydrases/ultrastructure , Cyanobacteria/enzymology , Cyanobacteria/ultrastructure , Immunohistochemistry , Photosystem II Protein Complex/metabolism , Salts/metabolism , Thylakoids/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...