Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Basic Clin Physiol Pharmacol ; 26(1): 1-11, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25046311

ABSTRACT

To understand HIV pathogenesis or development is no simple undertaking and neither is the cell cycle which is highly complex that requires the coordination of multiple events and machinery. It is interesting that these two processes are interrelated, intersect and interact as HIV-1 infection results in cell cycle arrest at the G2 phase which is accompanied by massive CD4+ T cell death. For its own benefit, in an impressive manner and with the overabundance of tactics, HIV maneuvers DNA damage responses and cell cycle check points for viral replication at different stages from infection, to latency and to pathogenesis. Although the cell cycle is the most critical aspect involved in both viral and cellular replication, in this review, our main focus is on recent developments, including our own observations in the field of cell cycle proteins, checkpoints and strategies utilized by the viruses to manipulate these pathways to promote their own replication and survival. We will also discuss the emerging concept of targeting the replication initiation machinery for HIV therapy.


Subject(s)
Cell Cycle Checkpoints , HIV Infections/physiopathology , HIV-1/pathogenicity , CD4-Positive T-Lymphocytes/pathology , DNA Damage , HIV Infections/drug therapy , HIV Infections/virology , Humans , Virus Replication
2.
Front Microbiol ; 6: 1444, 2015.
Article in English | MEDLINE | ID: mdl-26793166

ABSTRACT

As the threat of Human Immunodeficiency Virus (HIV)/Acquired Immunodeficiency Syndrome (AIDS) persists to rise, effective drug treatments are required to treat the infected people. Even though combination antiretroviral therapy (cART) provides stable viral suppression, it is not devoid of undesirable side effects, especially in persons undergoing long-term treatment. The present therapy finds its limitations in the emergence of multidrug resistance and accordingly finding new drugs and novel targets is the need of the hour to treat the infected persons and further to attack HIV reservoirs in the body like brain, lymph nodes to achieve the ultimate goal of complete eradication of HIV and AIDS. Natural products such as plant-originated compounds and plant extracts have enormous potential to become drug leads with anti-HIV and neuroprotective activity. Accordingly, many research groups are exploring the biodiversity of the plant kingdom to find new and better anti-HIV drugs with novel mechanisms of action and for HIV-associated neurocognitive disorders (HAND). The basic challenge that still persists is to develop viral replication-targeted therapy using novel anti-HIV compounds with new mode of action, accepted toxicity and less resistance profile. Against this backdrop, the World Health Organization (WHO) suggested the need to evaluate ethno-medicines for the management of HIV/AIDS. Consequently, there is need to evaluate traditional medicine, particularly medicinal plants and other natural products that may yield effective and affordable therapeutic agents. Although there are a good number of reports on traditional uses of plants to treat various diseases, knowledge of herbal remedies used to manage HIV/AIDS and HAND are scanty, vague and not well documented. In this review, plant substances showing a promising action that is anti-HIV and HAND will be explored along with what they interact. Since some plant substances are also known to modulate several cellular factors which are also involved in the replication of HIV and hence their role as potential candidates will be discussed. HIV/AIDS being an exceptional epidemic, demands an exceptional approach and that forms very much focus for the current review.

3.
J Basic Clin Physiol Pharmacol ; 23(4): 139-46, 2012.
Article in English | MEDLINE | ID: mdl-23072849

ABSTRACT

BACKGROUND: Many plant-derived products exhibit potent chemopreventive activity against animal tumor models as well as rodent and human cancer cell lines. They have low side effects and toxicity and presumably modulate the factors that are critical for cell proliferation, differentiation, senescence and apoptosis. The present study investigates the effects of some medicinal plant extracts from generally recognized as safe plants that may be useful in the prevention and treatment of cancer. METHODS: Clonogenic assays using logarithmically-growing cells were performed to test the effect. The cytotoxic effects of Curcuma longa and Zingiber officinale were studied using sulforhodamine B assay, tetrazolium dye assay, colony morphology and microscopic analysis. RESULTS: Out of the 13 lyophilized plant-derived extracts evaluated for growth-inhibitory effects on the PC-3M prostate cancer cell line, two extracts derived from C. longa and Z. officinale showed significant inhibitory effects on colony-forming ability. The individual and augmentative effects of these two extracts were tested for their narrow range effective lower concentration on PC-3M in clonogenic assays. At relatively lower concentrations, C. longa showed significant inhibition of colony formation in clonogenic assays; whereas at same concentrations Z. officinale showed only moderate inhibitory effects. However, when both the agents were tested together at the same concentrations, the combined effects were much more significant than their individual ones. On normal prostate epithelial cells both C. longa and Z. officinale had similar effects but at a lower magnitude. These observations were confirmed by several cytotoxicity assays involving the morphological appearance of the colonies, microscopic observations, per cent inhibition in comparison to control by sulforhodamine B and tetrazolium dye assay. CONCLUSIONS: From these observations, it was concluded that the combined effects of C. longa and Z. officinale are much greater than their individual effects, suggesting the role of multiple components and their synergistic mode of actions to elicit stronger beneficial effects.


Subject(s)
Curcuma , Phytotherapy , Plant Extracts/pharmacology , Prostatic Neoplasms/drug therapy , Zingiber officinale , Cell Line, Tumor , Cell Survival/drug effects , Drug Synergism , Humans , Male , Plant Extracts/administration & dosage , Prostatic Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...