Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Biol Interact ; 357: 109876, 2022 Apr 25.
Article in English | MEDLINE | ID: mdl-35283086

ABSTRACT

Glioblastoma multiforme (GBM) is a heterogeneous, aggressive brain cancer characterized by chemo-resistance and cancer stemness. Histone deacetylases (HDACs) are a group of enzymes that regulate chromatin epigenetics which were in turn found to be controlled by microRNAs (miRs). The drug employed in chemotherapy for the treatment of GBM is Temozolomide (TMZ). Unfortunately, many GBM patients exhibit chemo-resistance to this drug. Here we have synthesized various Suberoyl anilide hydroxamic acid (SAHA) analogs with many substitutions at the cap site majority of which not yet studied. These SAHA analogs have exhibited profound cytotoxicity at 2 µM, and 4 µM concentrations in GBM cancer cell line U87MG, and 1 µM, and 2 µM concentrations in breast cancer cell line MCF-7. Surprisingly, these analogs have exhibited cytotoxic effects in chronic lymphoid leukemia cells (Raji) at 64 µM, and 128 µM concentrations due to mutated p53. Among all the synthesized analogs 3-Chloro-SAHA, 3-Chloro-4-fluoro SAHA have exhibited effective cytotoxicity in all cancer cells. These potent analogs inhibited HDAC-8 enzyme activity by 2-folds in U87MG, and MCF-7 cell lines and 7-folds decrease in HDAC-8 activity was observed in Raji cell line. These analogs decreased the expression of HDAC-2, HDAC-3 genes and enhanced the expression of p53 tumor suppressor. Interestingly, these compounds decreased the expression of Rictor, the main component of the mTORC2 complex involved cancer cell metabolism. Furthermore, these molecules have decreased oncogenic microRNA expression such as miR-21 and enhanced the expression of tumor suppressor microRNAs such as miR-143. The HDAC binding ability of these molecules was highly significant and have exhibited the ability to cross blood-brain barrier (BBB), and followed the Lipinski rule of five. Thus, these molecules need to be taken up further to clinics for better therapy against GBM either singly or combination therapy.


Subject(s)
Antineoplastic Agents , Apoptosis , Glioblastoma , MicroRNAs , Vorinostat , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Proliferation , Glioblastoma/metabolism , Histone Deacetylase Inhibitors/chemical synthesis , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/metabolism , Humans , MicroRNAs/metabolism , Vorinostat/analogs & derivatives , Vorinostat/chemical synthesis , Vorinostat/pharmacology
2.
Life Sci ; 286: 120024, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34626605

ABSTRACT

Glioblastoma multiforme (GBM), grade IV glioma and is aggressive, malignant primary brain cancer. Altered expression and activity of epigenetic proteins such as histone deacetylases (HDACs) are involved in GBM metastasis. Also, acetates are important to brain metabolites that regulate cell proliferation and apoptosis. Here, we have examined the effect of the acetates on the cell-cycle. U87MG cancer cells treated with N-acetyl l-aspartate (NAA) and sodium acetate have exhibited G1 phase cell-cycle arrest whereas U87MG cells treated with Triacetin (TA), and potassium acetate has induced G2/M cell cycle arrest. We have observed inhibition of histone deacetylase (HDAC) mRNA levels in acetate treated U87MG cells. Interestingly, acetates-treated U87MG cells have shown a significant reduction in the mRNA level of class II HDACs than class I HDACs. Acetate treated cells have exhibited an enhanced expression of various microRNAs such as miR-15b, miR-92, miR-101, miR-155, miR-199, miR-200, miR-223, miR-16, and miR-17 that are involved in the inhibition of cancer cell proliferation, invasion, migration, and angiogenesis. Further, these acetate molecules regulate genes involved in mammalian target of rapamycin complex 2 (mTORC2) such as mammalian stress-activated protein kinase-interacting protein (mSIN1), protein observed with Rictor 2 (Protor 2), and protein kinase C α (PKCα). The present study reveals the possible involvement of the mTORC2 complex during acetate-mediated HDAC inhibition, as well as microRNA modulation. Furthermore, molecular modeling studies were employed to understand the binding mode of these acetate molecules to mTOR, Rapamycin-insensitive companion of mammalian target of rapamycin (Rictor), and HDAC-8 proteins. Thus in this study, we have identified the pivotal role of acetates in the modulation of mTOR complex, epigenetic genes and provide structural as well as functional insights that will help in future drug discovery against GBM cancer therapy.


Subject(s)
Apoptosis/drug effects , Aspartic Acid/analogs & derivatives , Brain Neoplasms/pathology , Gene Expression Regulation, Enzymologic/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Genes, Tumor Suppressor/drug effects , Glioblastoma/pathology , Histone Deacetylases/genetics , MicroRNAs/genetics , Triacetin/pharmacology , Aspartic Acid/pharmacology , Histone Deacetylase Inhibitors/pharmacology , Humans , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...