Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Biology (Basel) ; 12(12)2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38132337

ABSTRACT

The transcription factor E2F links the RB pathway to the p53 pathway upon loss of function of pRB, thereby playing a pivotal role in the suppression of tumorigenesis. E2F fulfills a major role in cell proliferation by controlling a variety of growth-associated genes. The activity of E2F is controlled by the tumor suppressor pRB, which binds to E2F and actively suppresses target gene expression, thereby restraining cell proliferation. Signaling pathways originating from growth stimulative and growth suppressive signals converge on pRB (the RB pathway) to regulate E2F activity. In most cancers, the function of pRB is compromised by oncogenic mutations, and E2F activity is enhanced, thereby facilitating cell proliferation to promote tumorigenesis. Upon such events, E2F activates the Arf tumor suppressor gene, leading to activation of the tumor suppressor p53 to protect cells from tumorigenesis. ARF inactivates MDM2, which facilitates degradation of p53 through proteasome by ubiquitination (the p53 pathway). P53 suppresses tumorigenesis by inducing cellular senescence or apoptosis. Hence, in almost all cancers, the p53 pathway is also disabled. Here we will introduce the canonical functions of the RB-E2F-p53 pathway first and then the non-classical functions of each component, which may be relevant to cancer biology.

2.
Cell Death Dis ; 14(9): 642, 2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37773170

ABSTRACT

Differentiation therapy has been proposed as a promising therapeutic strategy for acute myeloid leukemia (AML); thus, the development of more versatile methodologies that are applicable to a wide range of AML subtypes is desired. Although the FOXOs transcription factor represents a promising drug target for differentiation therapy, the efficacy of FOXO inhibitors is limited in vivo. Here, we show that pharmacological inhibition of a common cis-regulatory element of forkhead box O (FOXO) family members successfully induced cell differentiation in various AML cell lines. Through gene expression profiling and differentiation marker-based CRISPR/Cas9 screening, we identified TRIB1, a complement of the COP1 ubiquitin ligase complex, as a functional FOXO downstream gene maintaining an undifferentiated status. TRIB1 is direct target of FOXO3 and the FOXO-binding cis-regulatory element in the TRIB1 promoter, referred to as the FOXO-responsive element in the TRIB1 promoter (FRE-T), played a critical role in differentiation blockade. Thus, we designed a DNA-binding pharmacological inhibitor of the FOXO-FRE-T interface using pyrrole-imidazole polyamides (PIPs) that specifically bind to FRE-T (FRE-PIPs). The FRE-PIPs conjugated to chlorambucil (FRE-chb) inhibited transcription of TRIB1, causing differentiation in various AML cell lines. FRE-chb suppressed the formation of colonies derived from AML cell lines but not from normal counterparts. Administration of FRE-chb inhibited tumor progression in vivo without remarkable adverse effects. In conclusion, targeting cis-regulatory elements of the FOXO family is a promising therapeutic strategy that induces AML cell differentiation.

3.
Biochem Biophys Res Commun ; 621: 74-79, 2022 09 17.
Article in English | MEDLINE | ID: mdl-35810594

ABSTRACT

T cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy of immature T lymphocytes. Although various therapeutic approaches have been developed, refractoriness of chemotherapy and relapse cause a poor prognosis of the disease and further therapeutic strategies are required. Here, we report that Ras homolog enriched in brain (RHEB), a critical regulator of mTOR complex 1 activity, is a potential target for T-ALL therapy. In this study, we established an sgRNA library that comprehensively targeted mTOR upstream and downstream pathways, including autophagy. CRISPR/Cas9 dropout screening revealed critical roles of mTOR-related molecules in T-ALL cell survival. Among the regulators, we focused on RHEB because we previously found that it is dispensable for normal hematopoiesis in mice. Transcriptome and metabolic analyses revealed that RHEB deficiency suppressed de novo nucleotide biosynthesis, leading to human T-ALL cell death. Importantly, RHEB deficiency suppressed tumor growth in both mouse and xenograft models. Our data provide a potential strategy for efficient therapy of T-ALL by RHEB-specific inhibition.


Subject(s)
Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Ras Homolog Enriched in Brain Protein , Animals , Humans , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Ras Homolog Enriched in Brain Protein/genetics , Ras Homolog Enriched in Brain Protein/metabolism , Signal Transduction , T-Lymphocytes/metabolism , TOR Serine-Threonine Kinases/metabolism
4.
Cancer Sci ; 113(8): 2716-2726, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35657693

ABSTRACT

Lysosomes function as the digestive system of a cell and are involved in macromolecular recycling, vesicle trafficking, metabolic reprogramming, and progrowth signaling. Although quality control of lysosome biogenesis is thought to be a potential target for cancer therapy, practical strategies have not been established. Here, we show that lysosomal membrane integrity supported by lysophagy, a selective autophagy for damaged lysosomes, is a promising therapeutic target for glioblastoma (GBM). In this study, we found that ifenprodil, an FDA-approved drug with neuromodulatory activities, efficiently inhibited spheroid formation of patient-derived GBM cells in a combination with autophagy inhibition. Ifenprodil increased intracellular Ca2+ level, resulting in mitochondrial reactive oxygen species-mediated cytotoxicity. The ifenprodil-induced Ca2+ elevation was due to Ca2+ release from lysosomes, but not endoplasmic reticulum, associated with galectin-3 punctation as an indicator of lysosomal membrane damage. As the Ca2+ release was enhanced by ATG5 deficiency, autophagy protected against lysosomal membrane damage. By comparative analysis of 765 FDA-approved compounds, we identified another clinically available drug for central nervous system (CNS) diseases, amoxapine, in addition to ifenprodil. Both compounds promoted degradation of lysosomal membrane proteins, indicating a critical role of lysophagy in quality control of lysosomal membrane integrity. Importantly, a synergistic inhibitory effect of ifenprodil and chloroquine, a clinically available autophagy inhibitor, on spheroid formation was remarkable in GBM cells, but not in nontransformed neural progenitor cells. Finally, chloroquine dramatically enhanced effects of the compounds inducing lysosomal membrane damage in a patient-derived xenograft model. These data demonstrate a therapeutic advantage of targeting lysosomal membrane integrity in GBM.


Subject(s)
Glioblastoma , Glioma , Autophagy , Chloroquine/therapeutic use , Glioblastoma/drug therapy , Glioblastoma/metabolism , Glioma/drug therapy , Glioma/metabolism , Humans , Lysosomes/metabolism , Macroautophagy
5.
Sci Rep ; 11(1): 1666, 2021 01 18.
Article in English | MEDLINE | ID: mdl-33462315

ABSTRACT

Autophagy is a cellular degradation system contributing to homeostasis of tissue stem cells including haematopoietic stem cells (HSCs). It plays pleiotropic roles in HSC characteristics throughout life, but its stage-specific roles in HSC self-renewal are unclear. To investigate the effects of Atg5 deletion on stage-specific HSC functions, we compared the repopulating capacity of HSCs in Atg5f/f;Vavi-cre mice from postnatal day (P) 0-7 weeks of age. Interestingly, Atg5 deficiency led to no remarkable abnormality in the HSC self-renewal capacity at P0, but significant defects at P7, followed by severe defects. Induction of Atg5 deletion at P5 by tamoxifen administration to Atg5f/f;Rosa26-Cre-ERT2 mice resulted in normal haematopoiesis, including the HSC population, until around 1 year, suggesting that Atg5 in the early neonatal period was critical for haematopoiesis in adults. Mitochondrial oxidative stress was increased by Atg5 loss in neonatal HSC/progenitor cells. Although p62 had accumulated in immature bone marrow cells of Atg5f/f;Vavi-cre mice, p62 deletion did not restore defective HSC functions, indicating that Atg5-dependent haematopoietic regulation in the developmental period was independent of p62. This study proposes a critical role of autophagy in HSC protection against harsh environments in the early neonatal stage, which is essential for healthy long-term haematopoiesis.


Subject(s)
Autophagy-Related Protein 5/metabolism , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Sequestosome-1 Protein/metabolism , Animals , Animals, Newborn , Autophagy/physiology , Autophagy-Related Protein 5/genetics , Disease Models, Animal , Female , Hematopoietic Stem Cells/pathology , Male , Mice , Mice, Knockout , Oxidative Stress/physiology
6.
Commun Chem ; 3(1): 183, 2020 Dec 07.
Article in English | MEDLINE | ID: mdl-36703437

ABSTRACT

Metabolic syndrome is associated with obesity, hypertension, and dyslipidemia, and increased cardiovascular risk. Therefore, quick and accurate measurements of specific metabolites are critical for diagnosis; however, detection methods are limited. Here we describe the synthesis of pillar[n]arenes to target 1-methylnicotinamide (1-MNA), which is one metabolite of vitamin B3 (nicotinamide) produced by the cancer-associated nicotinamide N-methyltransferase (NNMT). We found that water-soluble pillar[5]arene (P5A) forms host-guest complexes with both 1-MNA and nicotinamide, and water-soluble pillar[6]arene (P6A) selectively binds to 1-MNA at the micromolar level. P6A can be used as a "turn-off sensor" by photoinduced electron transfer (detection limit is 4.38 × 10-6 M). In our cell-free reaction, P6A is used to quantitatively monitor the activity of NNMT. Moreover, studies using NNMT-deficient mice reveal that P6A exclusively binds to 1-MNA in crude urinary samples. Our findings demonstrate that P6A can be used as a biosensor to quantify 1-MNA in crude biological samples.

7.
Sci Rep ; 8(1): 8438, 2018 05 31.
Article in English | MEDLINE | ID: mdl-29855511

ABSTRACT

The transcription factor E2F plays crucial roles in cell proliferation and tumor suppression by activating growth-related genes and pro-apoptotic tumor suppressor genes, respectively. It is generally accepted that E2F binds to target sequences with its heterodimeric partner DP. Here we show that, while knockdown of DP1 expression inhibited ectopic E2F1- or adenovirus E1a-induced expression of the CDC6 gene and cell proliferation, knockdown of DP1 and DP2 expression did not affect ectopic E2F1- or E1a-induced expression of the tumor suppressor ARF gene, an upstream activator of the tumor suppressor p53, activation of p53 or apoptosis. These observations suggest that growth related and pro-apoptotic E2F targets are regulated by distinct molecular mechanisms and contradict the threshold model, which postulates that E2F activation of pro-apoptotic genes requires a higher total activity of activator E2Fs, above that necessary for E2F-dependent activation of growth-related genes.


Subject(s)
E2F1 Transcription Factor/metabolism , Transcription Factor DP1/metabolism , Tumor Suppressor Protein p53/metabolism , ADP-Ribosylation Factors/genetics , ADP-Ribosylation Factors/metabolism , Apoptosis , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Line , DNA-Binding Proteins/antagonists & inhibitors , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Dimerization , E2F1 Transcription Factor/chemistry , E2F1 Transcription Factor/genetics , Fibroblasts/cytology , Fibroblasts/metabolism , Humans , Promoter Regions, Genetic , RNA Interference , RNA, Small Interfering/metabolism , Transcription Factor DP1/antagonists & inhibitors , Transcription Factor DP1/genetics , Transcription Factors/antagonists & inhibitors , Transcription Factors/genetics , Transcription Factors/metabolism
8.
Biochem Biophys Res Commun ; 483(1): 107-114, 2017 01 29.
Article in English | MEDLINE | ID: mdl-28042030

ABSTRACT

In cancer treatment, specifically targeting cancer cells is important for optimal therapeutic efficacy. One strategy is to utilize a cancer specific promoter to express a cytotoxic gene or a viral gene required for replication. In this approach, the therapeutic window is dependent on the relative promoter activity in cancer cells versus normal cells. Therefore, a promoter with optimal cancer cell-specificity should be used. The tumor suppressor ARF promoter, which specifically responds to deregulated E2F activity, is a potent candidate. Defects in the RB pathway resulting in deregulated E2F activity are observed in almost all cancers. Furthermore, the ARF promoter exhibits greater cancer cell specificity than the E2F1 promoter and consequently, adenovirus expressing HSV-TK under the control of the ARF promoter (Ad-ARF-TK) has more selective cytotoxicity in cancer cells than the analogous E2F1 construct. Ideally, cancer specific gene expression driven by the ARF promoter could be enhanced for optimal therapeutic efficacy, with minimal side effects. We show here that ectopic expression of the CDK inhibitor p21Cip1 enhanced deregulated E2F activity and pro-apoptotic E2F target gene expression in cancer cells. Moreover, ectopic expression of p21Cip1 augmented cancer specific cytotoxicity of Ad-ARF-TK, and apoptosis induced by p21Cip1 was dependent on deregulated E2F activity. These results suggest that p21Cip1 specifically enhances deregulated E2F activity and that a combination of the CDK inhibitor with Ad-ARF-TK could be effectively employed for cancer therapy.


Subject(s)
Cyclin-Dependent Kinase Inhibitor p21/genetics , Cyclin-Dependent Kinase Inhibitor p21/metabolism , E2F Transcription Factors/genetics , E2F Transcription Factors/metabolism , Genes, p16 , Apoptosis , Cell Line, Tumor , Cyclin-Dependent Kinase Inhibitor p16 , Cyclin-Dependent Kinase Inhibitor p18/genetics , Cyclin-Dependent Kinase Inhibitor p18/metabolism , E2F1 Transcription Factor/genetics , E2F1 Transcription Factor/metabolism , Ectopic Gene Expression , Gene Expression Regulation, Neoplastic , Humans , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Promoter Regions, Genetic
9.
Biochem Biophys Res Commun ; 482(4): 784-790, 2017 Jan 22.
Article in English | MEDLINE | ID: mdl-27888102

ABSTRACT

The transcription factor E2F plays crucial roles in tumor suppression by activating pro-apoptotic genes such as the tumor suppressor ARF. The regulation of the ARF gene is distinct from that of growth-related E2F targets, in that it is specifically activated by deregulated E2F activity, induced by over-expression of E2F or forced inactivation of pRB, but not by physiological E2F activity induced by growth stimulation. The phosphatidyl inositol 3 kinase (PI3K) pathway was reported to suppress expression of some atypical pro-apoptotic genes by over-expressed E2F1. However, the effects of the PI3K pathway on the distinct regulation of typical pro-apoptotic E2F targets have not been elucidated. We examined whether the PI3K pathway suppressed activation of the typical pro-apoptotic E2F targets ARF and BIM. Activation of the PI3K pathway by growth stimulation or introduction of a constitutively active Akt/PKB did not reduce induction of ARF or BIM gene expression or activation of their promoters by over-expressed E2F1. These results suggest that the PI3K pathway does not suppress induction of typical pro-apoptotic genes that are selectively activated by deregulated E2F1.


Subject(s)
Bcl-2-Like Protein 11/metabolism , Cyclin-Dependent Kinase Inhibitor p18/metabolism , E2F1 Transcription Factor/metabolism , Gene Expression Regulation , Phosphatidylinositol 3-Kinases/metabolism , Apoptosis , Cyclin-Dependent Kinase Inhibitor p16 , Fibroblasts/metabolism , Humans , Retinoblastoma Protein/metabolism , Signal Transduction
10.
Genes Cells ; 20(9): 739-57, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26201719

ABSTRACT

The transcription factor E2F is the principal target of the tumor suppressor pRB. E2F plays crucial roles not only in cell proliferation by activating growth-related genes but also in tumor suppression by activating pro-apoptotic and growth-suppressive genes. We previously reported that, in human normal fibroblasts, the tumor suppressor genes ARF, p27(Kip1) and TAp73 are activated by deregulated E2F activity induced by forced inactivation of pRB, but not by physiological E2F activity induced by growth stimulation. In contrast, growth-related E2F targets are activated by both E2F activities, underscoring the roles of deregulated E2F in tumor suppression in the context of dysfunctional pRB. In this study, to further understand the roles of deregulated E2F, we explored new targets that are specifically activated by deregulated E2F using DNA microarray. The analysis identified nine novel targets (BIM, RASSF1, PPP1R13B, JMY, MOAP1, RBM38, ABTB1, RBBP4 and RBBP7), many of which are involved in the p53 and RB tumor suppressor pathways. Among these genes, the BIM gene was shown to be activated via atypical E2F-responsive promoter elements and to contribute to E2F1-mediated apoptosis. Our results underscore crucial roles of deregulated E2F in growth suppression to counteract loss of pRB function.


Subject(s)
Apoptosis Regulatory Proteins/genetics , E2F Transcription Factors/metabolism , E2F1 Transcription Factor/metabolism , Fibroblasts/metabolism , Genes, Tumor Suppressor , Membrane Proteins/genetics , Proto-Oncogene Proteins/genetics , Apoptosis , Bcl-2-Like Protein 11 , Cell Line , Promoter Regions, Genetic
11.
Biochem Biophys Res Commun ; 450(1): 240-6, 2014 Jul 18.
Article in English | MEDLINE | ID: mdl-24893334

ABSTRACT

In current cancer treatment protocols, such as radiation and chemotherapy, side effects on normal cells are major obstacles to radical therapy. To avoid these side effects, a cancer cell-specific approach is needed. One way to specifically target cancer cells is to utilize a cancer specific promoter to express a cytotoxic gene (suicide gene therapy) or a viral gene required for viral replication (oncolytic virotherapy). For this purpose, the selected promoter should have minimal activity in normal cells to avoid side effects, and high activity in a wide variety of cancers to obtain optimal therapeutic efficacy. In contrast to the AFP, CEA and PSA promoters, which have high activity only in a limited spectrum of tumors, the E2F1 promoter exhibits high activity in wide variety of cancers. This is based on the mechanism of carcinogenesis. Defects in the RB pathway and activation of the transcription factor E2F, the main target of the RB pathway, are observed in almost all cancers. Consequently, the E2F1 promoter, which is mainly regulated by E2F, has high activity in wide variety of cancers. However, E2F is also activated by growth stimulation in normal growing cells, suggesting that the E2F1 promoter may also be highly active in normal growing cells. In contrast, we found that the tumor suppressor ARF promoter is activated by deregulated E2F activity, induced by forced inactivation of pRB, but does not respond to physiological E2F activity induced by growth stimulation. We also found that the deregulated E2F activity, which activates the ARF promoter, is detected only in cancer cell lines. These observations suggest that ARF promoter is activated by E2F only in cancer cells and therefore may be more cancer cell-specific than E2F1 promoter to drive gene expression. We show here that the ARF promoter has lower activity in normal growing fibroblasts and shows higher cancer cell-specificity compared to the E2F1 promoter. We also demonstrate that adenovirus expressing HSV-TK under the control of the ARF promoter shows lower cytotoxicity than that of the E2F1 promoter, in normal growing fibroblasts but has equivalent cytotoxicity in cancer cell lines. These results suggest that the ARF promoter, which is specifically activated by deregulated E2F activity, is an excellent candidate to drive therapeutic cytotoxic gene expression, specifically in cancer cells.


Subject(s)
E2F1 Transcription Factor/genetics , Neoplasms, Experimental/genetics , Neoplasms, Experimental/therapy , Promoter Regions, Genetic/genetics , Tumor Suppressor Protein p14ARF/genetics , Tumor Suppressor Proteins/genetics , Apoptosis/genetics , Cell Line, Tumor , Genes, Transgenic, Suicide/genetics , Genes, Tumor Suppressor , Genetic Therapy/methods , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...