Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Antimicrob Chemother ; 79(2): 262-270, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38069908

ABSTRACT

BACKGROUND: Pathophysiological changes in severely burned patients alter the pharmacokinetics (PK) of anti-infective agents, potentially leading to subtherapeutic concentrations at the target site. Albumin supplementation, to support fluid resuscitation, may affect pharmacokinetic properties by binding drugs. This study aimed to investigate the PK of piperacillin/tazobactam in burn patients admitted to the ICU before and after albumin substitution as total and unbound concentrations in plasma. PATIENTS AND METHODS: Patients admitted to the ICU and scheduled for 4.5 g piperacillin/tazobactam administration and 200 mL of 20% albumin substitution as part of clinical routine were included. Patients underwent IV microdialysis, and simultaneous arterial plasma sampling, at baseline and multiple timepoints after drug administration. PK analysis of total and unbound drug concentrations under steady-state conditions was performed before and after albumin supplementation. RESULTS: A total of seven patients with second- to third-degree burns involving 20%-60% of the total body surface were enrolled. Mean (SD) AUC0-8 (h·mg/L) of total piperacillin/tazobactam before and after albumin substitution were 402.1 (242)/53.2 (27) and 521.8 (363)/59.7 (32), respectively. Unbound mean AUC0-8 before and after albumin supplementation were 398.9 (204)/54.5 (25) and 456.4 (439)/64.5 (82), respectively. CONCLUSIONS: Albumin supplementation had little impact on the PK of piperacillin/tazobactam. After albumin supplementation, there was a numerical increase in mean AUC0-8 of total and unbound piperacillin/tazobactam, whereas similar Cmax values were observed. Future studies may investigate the effect of albumin supplementation on drugs with a higher plasma protein binding.


Subject(s)
Anti-Bacterial Agents , Burns , Humans , Anti-Bacterial Agents/therapeutic use , Piperacillin/pharmacokinetics , Penicillanic Acid/pharmacokinetics , Piperacillin, Tazobactam Drug Combination/pharmacokinetics , Burns/complications , Burns/drug therapy , Intensive Care Units
2.
J Antimicrob Chemother ; 76(8): 2106-2113, 2021 07 15.
Article in English | MEDLINE | ID: mdl-33970263

ABSTRACT

OBJECTIVES: The efficacy of an anti-infective drug is influenced by its protein binding (PB), since only the free fraction is active. We hypothesized that PB may vary in vitro and in vivo, and used clindamycin, a drug with high and concentration-dependent PB to investigate this hypothesis. METHODS: Six healthy volunteers received a single intravenous infusion of clindamycin 900 mg. Antibiotic plasma concentrations were obtained by blood sampling and unbound drug concentrations were determined by means of in vivo intravascular microdialysis (MD) or in vitro ultrafiltration (UF) for up to 8 h post dosing. Clindamycin was assayed in plasma and MD fluid using a validated HPLC-UV (ultraviolet) method. Non-linear mixed effects modelling in NONMEM® was used to quantify the PB in vivo and in vitro. RESULTS: C max was 14.95, 3.39 and 2.32 mg/L and AUC0-8h was 41.78, 5.80 and 6.14 mg·h/L for plasma, ultrafiltrate and microdialysate, respectively. Calculated ratio of AUCunbound/AUCtotal showed values of 13.9%±1.8% and 14.7%±3.1% for UF and microdialysate, respectively. Modelling confirmed non-linear, saturable PB for clindamycin with slightly different median (95% CI) dissociation constants (Kd) for the alpha-1 acid glycoprotein (AAG)-clindamycin complex of 1.16 mg/L (0.91-1.37) in vitro versus 0.85 mg/L (0.58-1.01) in vivo. Moreover, the estimated number of binding sites per AAG molecule was 2.07 (1.79-2.25) in vitro versus 1.66 in vivo (1.41-1.79). CONCLUSIONS: Concentration-dependent PB was observed for both investigated methods with slightly lower levels of unbound drug fractions in vitro as compared with in vivo.


Subject(s)
Anti-Bacterial Agents , Clindamycin , Healthy Volunteers , Humans , Microdialysis , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL