Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 5): 838-42, 2013 May.
Article in English | MEDLINE | ID: mdl-23633593

ABSTRACT

X-ray free-electron lasers (FELs) enable crystallographic data collection using extremely bright femtosecond pulses from microscopic crystals beyond the limitations of conventional radiation damage. This diffraction-before-destruction approach requires a new crystal for each FEL shot and, since the crystals cannot be rotated during the X-ray pulse, data collection requires averaging over many different crystals and a Monte Carlo integration of the diffraction intensities, making the accurate determination of structure factors challenging. To investigate whether sufficient accuracy can be attained for the measurement of anomalous signal, a large data set was collected from lysozyme microcrystals at the newly established `multi-purpose spectroscopy/imaging instrument' of the SPring-8 Ångstrom Compact Free-Electron Laser (SACLA) at RIKEN Harima. Anomalous difference density maps calculated from these data demonstrate that serial femtosecond crystallography using a free-electron laser is sufficiently accurate to measure even the very weak anomalous signal of naturally occurring S atoms in a protein at a photon energy of 7.3 keV.


Subject(s)
Crystallography, X-Ray/methods , Lasers , Protein Conformation , Sulfur/chemistry , Crystallography, X-Ray/instrumentation , Cysteine/chemistry , Models, Molecular , Muramidase/chemistry
2.
Phys Rev Lett ; 108(9): 098302, 2012 Mar 02.
Article in English | MEDLINE | ID: mdl-22463673

ABSTRACT

Time-resolved measurements of quantum dynamics are based on the availability of controlled events that are shorter than the typical evolution time scale of the processes to be observed. Here we introduce the concept of noise-enhanced pump-probe spectroscopy, allowing the measurement of dynamics significantly shorter than the average pulse duration by exploiting randomly varying, partially coherent light fields consisting of bunched colored noise. These fields are shown to be superior by more than a factor of 10 to frequency-stabilized fields, with important implications for time-resolved experiments at x-ray free-electron lasers and, in general, for measurements at the frontiers of temporal resolution (e.g., attosecond spectroscopy). As an example application, the concept is used to explain the recent experimental observation of vibrational wave-packet motion in D(2)(+) on time scales shorter than the average pulse duration.

SELECTION OF CITATIONS
SEARCH DETAIL
...