Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Front Endocrinol (Lausanne) ; 15: 1411483, 2024.
Article in English | MEDLINE | ID: mdl-38828411

ABSTRACT

Ghrelin is a peptide hormone with various important physiological functions. The unique feature of ghrelin is its serine 3 acyl-modification, which is essential for ghrelin activity. The major form of ghrelin is modified with n-octanoic acid (C8:0) by ghrelin O-acyltransferase. Various acyl modifications have been reported in different species. However, the underlying mechanism by which ghrelin is modified with various fatty acids remains to be elucidated. Herein, we report the purification of bovine, porcine, and equine ghrelins. The major active form of bovine ghrelin was a 27-amino acid peptide with an n-octanoyl (C8:0) modification at Ser3. The major active form of porcine and equine ghrelin was a 28-amino acid peptide. However, porcine ghrelin was modified with n-octanol (C8:0), whereas equine ghrelin was modified with n-butanol (C4:0) at Ser3. This study indicates the existence of structural divergence in ghrelin and suggests that it is necessary to measure the minor and major forms of ghrelin to fully understand its physiology.


Subject(s)
Ghrelin , Animals , Ghrelin/metabolism , Ghrelin/chemistry , Horses , Cattle , Swine , Amino Acid Sequence , Acylation , Caprylates/metabolism
2.
Biochem Biophys Res Commun ; 559: 197-202, 2021 06 25.
Article in English | MEDLINE | ID: mdl-33945998

ABSTRACT

Tachykinin-like peptides, such as substance P, neurokinin A, and neurokinin B, are among the earliest discovered and best-studied neuropeptide families, and research on them has contributed greatly to our understanding of the endocrine control of many physiological processes. However, there are still many orphan tachykinin receptor homologs for which cognate ligands have not yet been identified, especially in small invertebrates, such as the nematode Caenorhabditis elegans (C. elegans). We here show that the C. elegans nlp-58 gene encodes putative ligands for the orphan G protein-coupled receptor (GPCR) TKR-1, which is a worm ortholog of tachykinin receptors. We first determine, through an unbiased biochemical screen, that a peptide derived from the NLP-58 preprotein stimulates TKR-1. Three mature peptides that are predicted to be generated from NLP-58 show potent agonist activity against TKR-1. We designate these peptides as C. elegans tachykinin (CeTK)-1, -2, and -3. The CeTK peptides contain the C-terminal sequence GLR-amide, which is shared by tachykinin-like peptides in other invertebrate species. nlp-58 exhibits a strongly restricted expression pattern in several neurons, implying that CeTKs behave as neuropeptides. The discovery of CeTKs provides important information to aid our understanding of tachykinin-like peptides and their functional interaction with GPCRs.


Subject(s)
Caenorhabditis elegans/metabolism , Tachykinins/metabolism , Amino Acid Sequence , Animals , Base Sequence , CHO Cells , Cricetulus , Tachykinins/chemistry , Tachykinins/genetics , Tachykinins/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL