Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 100
Filter
Add more filters










Publication year range
1.
Genes Genet Syst ; 98(6): 353-360, 2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38267054

ABSTRACT

We report the complete organellar genome sequences of an ultrasmall green alga, Medakamo hakoo strain M-hakoo 311, which has the smallest known nuclear genome in freshwater green algae. Medakamo hakoo has 90.8-kb chloroplast and 36.5-kb mitochondrial genomes containing 80 and 33 putative protein-coding genes, respectively. The mitochondrial genome is the smallest in the Trebouxiophyceae algae studied so far. The GC content of the nuclear genome is 73%, but those of chloroplast and mitochondrial genomes are 41% and 35%, respectively. Codon usages in the organellar genomes have a different tendency from that in the nuclear genome. The organellar genomes have unique characteristics, such as the biased encoding of mitochondrial genes on a single strand and the absence of operon structures in chloroplast ribosomal genes. Medakamo hakoo will be helpful for understanding the evolution of the organellar genome and the regulation of gene expression in chloroplasts and mitochondria.


Subject(s)
Chlorophyta , Genome, Mitochondrial , Microalgae , DNA, Chloroplast/genetics , Mitochondria/genetics , Chloroplasts/genetics , Chlorophyta/genetics , Fresh Water , Phylogeny , DNA, Mitochondrial/genetics
2.
Commun Biol ; 6(1): 89, 2023 01 23.
Article in English | MEDLINE | ID: mdl-36690657

ABSTRACT

Ultrasmall algae have attracted the attention of biologists investigating the basic mechanisms underlying living systems. Their potential as effective organisms for producing useful substances is also of interest in bioindustry. Although genomic information is indispensable for elucidating metabolism and promoting molecular breeding, many ultrasmall algae remain genetically uncharacterized. Here, we present the nuclear genome sequence of an ultrasmall green alga of freshwater habitats, Medakamo hakoo. Evolutionary analyses suggest that this species belongs to a new genus within the class Trebouxiophyceae. Sequencing analyses revealed that its genome, comprising 15.8 Mbp and 7629 genes, is among the smallest known genomes in the Viridiplantae. Its genome has relatively few genes associated with genetic information processing, basal transcription factors, and RNA transport. Comparative analyses revealed that 1263 orthogroups were shared among 15 ultrasmall algae from distinct phylogenetic lineages. The shared gene sets will enable identification of genes essential for algal metabolism and cellular functions.


Subject(s)
Chlorophyta , Genome , Phylogeny , Chlorophyta/genetics , Genomics , Fresh Water
3.
Protoplasma ; 259(3): 731-742, 2022 May.
Article in English | MEDLINE | ID: mdl-34417661

ABSTRACT

Mitochondria are essential organelles involved in the production and supply of energy in eukaryotic cells. Recently, the use of serial section scanning electron microscopy (S3EM) has allowed accurate three-dimensional (3D) reconstructed images of even complex organelle structures. Using this method, ultrathin sections of etiolated cotyledons were observed 4 days after germination of Arabidopsis thaliana in the dark, and giant mitochondria were found. To exclude the possibility of chemical fixation artifacts, this study confirmed the presence of giant mitochondria in high-pressure frozen samples. The 3D reconstructed giant mitochondria had a complex structure that included not only the elongated region but also the flattened shape of a disk. It contained the characteristic sheet structure, and the sheet lacked cristae and matrix but consisted of outer and inner membranes. Whether this phenomenon could be observed in living cells was investigated using the transformant with mitochondrial matrix expressing green fluorescent protein. Small globular mitochondria observed in light-treated samples were also represented in etiolated cotyledons. Although no giant mitochondria were observed in light-treated samples, they were found in the dark 3 days after germination and rapidly increased in number on the fourth day. Therefore, giant mitochondria were observed only in dark samples. These findings were supported by electron microscopy results.


Subject(s)
Arabidopsis , Cotyledon/metabolism , Microscopy, Electron, Scanning , Mitochondria , Organelles/metabolism
4.
Protoplasma ; 258(1): 129-138, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32968871

ABSTRACT

During pollen maturation, various organelles change their distribution and function during development as male gametophytes. We analyzed the behavior of lipid bodies and vacuoles involved in lipophagy in Arabidopsis pollen using serial section SEM and conventional TEM. At the bicellular pollen stage, lipid bodies in the vegetative cells lined up at the surface of the generative cell. Vacuoles then tightly attached, drew in, and degraded the lipid bodies and eventually occupied the space of the lipid bodies. Degradation of lipid began before transfer of the entire contents of the lipid body. At the tricellular stage, vacuoles instead of lipid bodies surrounded the sperm cells. The degradation of lipid bodies is morphologically considered microautophagy. The atg2-1 Arabidopsis mutant is deficient in one autophagy-related gene (ATG). In this mutant, the assembly of vacuoles around sperm cells was sparser than that in wild-type pollen. The deficiency of ATG2 likely prevents or slows lipid degradation, although it does not prevent contact between organelles. These results demonstrate the involvement of microlipophagy in the pollen development of Arabidopsis.


Subject(s)
Arabidopsis/metabolism , Lipid Droplets/metabolism , Pollen/chemistry , Spermatozoa/metabolism , Vacuoles/ultrastructure , Animals , Male
5.
Sci Rep ; 10(1): 13794, 2020 08 24.
Article in English | MEDLINE | ID: mdl-32839467

ABSTRACT

Microalgae possess high potential for producing pigments, antioxidants, and lipophilic compounds for industrial applications. However, their open pond cultures are often contaminated by other undesirable organisms, including their predators. In addition, the cost of using freshwater is relatively high, which limits the location and scale of cultivation compared with using seawater. It was previously shown that Cyanidium caldarium and Galdieria sulphuraria, but not Cyanidioschyzon merolae grew in media containing NaCl at a concentration equivalent to seawater. We found that the preculture of C. merolae in the presence of a moderate NaCl concentration enabled the cells to grow in the seawater-based medium. The cultivation of cyanidialean red algae in the seawater-based medium did not require additional pH buffering chemicals. In addition, the combination of seawater and acidic conditions reduced the risk of contamination by other organisms in the nonsterile open culture of C. merolae more efficiently than the acidic condition alone.


Subject(s)
Acids/chemistry , Culture Media/chemistry , Microalgae/growth & development , Rhodophyta/growth & development , Seawater/chemistry , Culture Media/pharmacology , Hydrogen-Ion Concentration , Microalgae/classification , Microalgae/drug effects , Microbiological Techniques/methods , Reproducibility of Results , Rhodophyta/classification , Rhodophyta/drug effects
6.
J Cell Sci ; 133(9)2020 05 11.
Article in English | MEDLINE | ID: mdl-32393673

ABSTRACT

Peroxisomes are single-membrane organelles present in eukaryotes. The functional importance of peroxisomes in humans is represented by peroxisome-deficient peroxisome biogenesis disorders (PBDs), including Zellweger syndrome. Defects in the genes that encode the 14 peroxins that are required for peroxisomal membrane assembly, matrix protein import and division have been identified in PBDs. A number of recent findings have advanced our understanding of the biology, physiology and consequences of functional defects in peroxisomes. In this Review, we discuss a cooperative cell defense mechanisms against oxidative stress that involves the localization of BAK (also known as BAK1) to peroxisomes, which alters peroxisomal membrane permeability, resulting in the export of catalase, a peroxisomal enzyme. Another important recent finding is the discovery of a nucleoside diphosphate kinase-like protein that has been shown to be essential for how the energy GTP is generated and provided for the fission of peroxisomes. With regard to PBDs, we newly identified a mild mutation, Pex26-F51L that causes only hearing loss. We will also discuss findings from a new PBD model mouse defective in Pex14, which manifested dysregulation of the BDNF-TrkB pathway, an essential signaling pathway in cerebellar morphogenesis. Here, we thus aim to provide a current view of peroxisome biogenesis and the molecular pathogenesis of PBDs.


Subject(s)
Peroxisomal Disorders , Peroxisomes , Animals , Intracellular Membranes/metabolism , Mice , Peroxins , Peroxisomal Disorders/genetics , Peroxisomes/metabolism , Protein Transport
7.
Front Cell Dev Biol ; 8: 169, 2020.
Article in English | MEDLINE | ID: mdl-32346536

ABSTRACT

In many eukaryotes, cytokinesis proceeds in two successive steps: first, ingression of the cleavage furrow and second, abscission of the intercellular bridge. In animal cells, the actomyosin contractile ring is involved in the first step, while the endosomal sorting complex required for transport (ESCRT), which participates in various membrane fusion/fission events, mediates the second step. Intriguingly, in archaea, ESCRT is involved in cytokinesis, raising the hypothesis that the function of ESCRT in eukaryotic cytokinesis descended from the archaeal ancestor. In eukaryotes other than in animals, the roles of ESCRT in cytokinesis are poorly understood. To explore the primordial core mechanisms for eukaryotic cytokinesis, we investigated ESCRT functions in the unicellular red alga Cyanidioschyzon merolae that diverged early in eukaryotic evolution. C. merolae provides an excellent experimental system. The cell has a simple organelle composition. The genome (16.5 Mb, 5335 genes) has been completely sequenced, transformation methods are established, and the cell cycle is synchronized by a light and dark cycle. Similar to animal and fungal cells, C. merolae cells divide by furrowing at the division site followed by abscission of the intercellular bridge. However, they lack an actomyosin contractile ring. The proteins that comprise ESCRT-I-IV, the four subcomplexes of ESCRT, are partially conserved in C. merolae. Immunofluorescence of native or tagged proteins localized the homologs of the five ESCRT-III components [charged multivesicular body protein (CHMP) 1, 2, and 4-6], apoptosis-linked gene-2-interacting protein X (ALIX), the ESCRT-III adapter, and the main ESCRT-IV player vacuolar protein sorting (VPS) 4, to the intercellular bridge. In addition, ALIX was enriched around the cleavage furrow early in cytokinesis. When the ESCRT function was perturbed by expressing dominant-negative VPS4, cells with an elongated intercellular bridge accumulated-a phenotype resulting from abscission failure. Our results show that ESCRT mediates cytokinetic abscission in C. merolae. The fact that ESCRT plays a role in cytokinesis in archaea, animals, and early diverged alga C. merolae supports the hypothesis that the function of ESCRT in cytokinesis descended from archaea to a common ancestor of eukaryotes.

8.
Protoplasma ; 257(4): 1069-1078, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32185527

ABSTRACT

Primary plastids originated from a free-living cyanobacterial ancestor and possess their own genomes-probably a few DNA copies. These genomes, which are organized in centrally located plastid nuclei (CN-type pt-nuclei), are produced from preexisting plastids by binary division. Ancestral algae with a CN-type pt-nucleus diverged and evolved into two basal eukaryotic lineages: red algae with circular (CL-type) pt-nuclei and green algae with scattered small (SN-type) pt-nuclei. Although the molecular dynamics of pt-nuclei in green algae and plants are now being analyzed, the process of the conversion of the original algae with a CN-type pt-nucleus to red algae with a CL-type one has not been studied. Here, we show that the CN-type pt-nucleus in the primitive red alga Cyanidioschyzon merolae can be changed to the CL-type by application of drying to produce slight cell swelling. This result implies that CN-type pt-nuclei are produced by compact packing of CL-type ones, which suggests that a C. merolae-like alga was the original progenitor of the red algal lineage. We also observed that the CL-type pt-nucleus has a chain-linked bead-like structure. Each bead is most likely a small unit of DNA, similar to CL-type pt-nuclei in brown algae. Our results thus suggest a C. merolae-like alga as the candidate for the secondary endosymbiont of brown algae.


Subject(s)
Cell Nucleus/genetics , Plastids/genetics , Rhodophyta/genetics , Biological Evolution
9.
Commun Biol ; 2: 477, 2019.
Article in English | MEDLINE | ID: mdl-31886415

ABSTRACT

The mitochondrion is an organelle that was derived from an endosymbiosis. Although regulation of mitochondrial growth by the host cell is necessary for the maintenance of mitochondria, it is unclear how this regulatory mechanism was acquired. To address this, we studied the primitive unicellular red alga Cyanidioschyzon merolae, which has the simplest eukaryotic genome and a single mitochondrion. Here we show that the C. merolae Aurora kinase ortholog CmAUR regulates mitochondrial division through phosphorylation of mitochondrial division ring components. One of the components, the Drp1 ortholog CmDnm1, has at least four sites phosphorylated by CmAUR. Depletion of the phosphorylation site conserved among eukaryotes induced defects such as mitochondrial distribution on one side of the cell. Taken together with the observation that human Aurora kinase phosphorylates Drp1 in vitro, we suggest that the phosphoregulation is conserved from the simplest eukaryotes to mammals, and was acquired at the primitive stage of endosymbiosis.


Subject(s)
Aurora Kinases/genetics , Aurora Kinases/metabolism , Biological Evolution , Mitochondria/genetics , Mitochondria/metabolism , Rhodophyta/genetics , Rhodophyta/metabolism , Aurora Kinases/chemistry , Mitosis , Phosphorylation , Rhodophyta/enzymology , Substrate Specificity
10.
Article in English | MEDLINE | ID: mdl-30745504

ABSTRACT

GTP is an essential source of energy that supports a large array of cellular mechanochemical structures ranging from protein synthesis machinery to cytoskeletal apparatus for maintaining the cell cycle. However, GTP regulation during the cell cycle has been difficult to investigate because of heterogenous levels of GTP in asynchronous cell cycles and genetic redundancy of the GTP-generating enzymes. Here, in the unicellular red algae Cyanidioschyzon merolae, we demonstrated that the ATP-GTP-converting enzyme DYNAMO2 is an essential regulator of global GTP levels during the cell cycle. The cell cycle of C. merolae can be highly synchronized by light/dark stimulations to examine GTP levels at desired time points. Importantly, the genome of C. merolae encodes only two isoforms of the ATP-GTP-converting enzyme, namely DYNAMO1 and DYNAMO2. DYNAMO1 regulates organelle divisions, whereas DYNAMO2 is entirely localized in the cytoplasm. DYNAMO2 protein levels increase during the S-M phases, and changes in GTP levels are correlated with these DYNAMO2 protein levels. These results indicate that DYNAMO2 is a potential regulator of global GTP levels during the cell cycle.


Subject(s)
Cell Cycle , Guanosine Triphosphate/metabolism , Nucleoside-Diphosphate Kinase/metabolism , Rhodophyta/cytology , Amino Acid Sequence , Cell Division , Cytosol/metabolism , Nucleoside-Diphosphate Kinase/chemistry , Rhodophyta/metabolism
11.
Nat Commun ; 9(1): 4634, 2018 11 06.
Article in English | MEDLINE | ID: mdl-30401830

ABSTRACT

Mitochondria and peroxisomes proliferate by division. During division, a part of their membrane is pinched off by constriction of the ring-shaped mitochondrial division (MD) and peroxisome-dividing (POD) machinery. This constriction is mediated by a dynamin-like GTPase Dnm1 that requires a large amount of GTP as an energy source. Here, via proteomics of the isolated division machinery, we show that the 17-kDa nucleoside diphosphate kinase-like protein, dynamin-based ring motive-force organizer 1 (DYNAMO1), locally generates GTP in MD and POD machineries. DYNAMO1 is widely conserved among eukaryotes and colocalizes with Dnm1 on the division machineries. DYNAMO1 converts ATP to GTP, and disruption of its activity impairs mitochondrial and peroxisomal fissions. DYNAMO1 forms a ring-shaped complex with Dnm1 and increases the magnitude of the constricting force. Our results identify DYNAMO1 as an essential component of MD and POD machineries, suggesting that local GTP generation in Dnm1-based machinery regulates motive force for membrane severance.


Subject(s)
Dynamins/metabolism , Guanosine Triphosphate/metabolism , Mitochondria/metabolism , Peroxisomes/metabolism , Adenosine Triphosphate/metabolism , Cell Division , Dynamin I/metabolism , Dynamins/genetics , Eukaryota , GTP Phosphohydrolases/metabolism , Mitochondrial Dynamics , Nucleoside-Diphosphate Kinase/metabolism , Proteomics , Rhodophyta , Sequence Alignment
12.
Proc Natl Acad Sci U S A ; 114(50): 13284-13289, 2017 12 12.
Article in English | MEDLINE | ID: mdl-29180407

ABSTRACT

Mitochondria, which evolved from a free-living bacterial ancestor, contain their own genomes and genetic systems and are produced from preexisting mitochondria by binary division. The mitochondrion-dividing (MD) ring is the main skeletal structure of the mitochondrial division machinery. However, the assembly mechanism and molecular identity of the MD ring are unknown. Multi-omics analysis of isolated mitochondrial division machinery from the unicellular alga Cyanidioschyzon merolae revealed an uncharacterized glycosyltransferase, MITOCHONDRION-DIVIDING RING1 (MDR1), which is specifically expressed during mitochondrial division and forms a single ring at the mitochondrial division site. Nanoscale imaging using immunoelectron microscopy and componential analysis demonstrated that MDR1 is involved in MD ring formation and that the MD ring filaments are composed of glycosylated MDR1 and polymeric glucose nanofilaments. Down-regulation of MDR1 strongly interrupted mitochondrial division and obstructed MD ring assembly. Taken together, our results suggest that MDR1 mediates the synthesis of polyglucan nanofilaments that assemble to form the MD ring. Given that a homolog of MDR1 performs similar functions in chloroplast division, the establishment of MDR1 family proteins appears to have been a singular, crucial event for the emergence of endosymbiotic organelles.


Subject(s)
Glycosyltransferases/metabolism , Organelle Biogenesis , Plant Proteins/metabolism , Rhodophyta/metabolism , Glucans/metabolism , Glycosyltransferases/genetics , Mitochondria/metabolism , Mitochondria/physiology , Mitochondria/ultrastructure , Plant Proteins/genetics , Rhodophyta/ultrastructure
14.
Science ; 356(6338): 631-634, 2017 05 12.
Article in English | MEDLINE | ID: mdl-28495749

ABSTRACT

Holliday junctions, four-stranded DNA structures formed during homologous recombination, are disentangled by resolvases that have been found in prokaryotes and eukaryotes but not in plant organelles. Here, we identify monokaryotic chloroplast 1 (MOC1) as a Holliday junction resolvase in chloroplasts by analyzing a green alga Chlamydomonas reinhardtii mutant defective in chloroplast nucleoid (DNA-protein complex) segregation. MOC1 is structurally similar to a bacterial Holliday junction resolvase, resistance to ultraviolet (Ruv) C, and genetically conserved among green plants. Reduced or no expression of MOC1 in Arabidopsis thaliana leads to growth defects and aberrant chloroplast nucleoid segregation. In vitro biochemical analysis and high-speed atomic force microscopic analysis revealed that A. thaliana MOC 1 (AtMOC1) binds and cleaves the core of Holliday junctions symmetrically. MOC1 may mediate chloroplast nucleoid segregation in green plants by resolving Holliday junctions.


Subject(s)
Chlamydomonas reinhardtii/cytology , Chlamydomonas reinhardtii/genetics , Holliday Junction Resolvases/metabolism , Arabidopsis , Chlamydomonas reinhardtii/metabolism , Chloroplasts/genetics , Chloroplasts/metabolism , DNA, Chloroplast , DNA, Cruciform
15.
Front Plant Sci ; 8: 343, 2017.
Article in English | MEDLINE | ID: mdl-28352279

ABSTRACT

The unicellular red alga Cyanidioschyzon merolae possesses a simple cellular architecture that consists of one mitochondrion, one chloroplast, one peroxisome, one Golgi apparatus, and several lysosomes. The nuclear genome content is also simple, with very little genetic redundancy (16.5 Mbp, 4,775 genes). In addition, molecular genetic tools such as gene targeting and inducible gene expression systems have been recently developed. These cytological features and genetic tractability have facilitated various omics analyses. However, only a single transformation selection marker URA has been made available and thus the application of genetic modification has been limited. Here, we report the development of a nuclear targeting method by using chloramphenicol and the chloramphenicol acetyltransferase (CAT) gene. In addition, we found that at least 200-bp homologous arms are required and 500-bp arms are sufficient for a targeted single-copy insertion of the CAT selection marker into the nuclear genome. By means of a combination of the URA and CAT transformation systems, we succeeded in producing a C. merolae strain that expresses HA-cyclin 1 and FLAG-CDKA from the chromosomal CYC1 and CDKA loci, respectively. These methods of multiple nuclear targeting will facilitate genetic manipulation of C. merolae.

16.
J Cell Sci ; 130(5): 853-867, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28115534

ABSTRACT

Organelle division is executed through contraction of a ring-shaped supramolecular dividing machinery. A core component of the machinery is the dynamin-based ring conserved during the division of mitochondrion, plastid and peroxisome. Here, using isolated peroxisome-dividing (POD) machinery from a unicellular red algae, Cyanidioschyzon merolae, we identified a dynamin-based ring organizing center (DOC) that acts as an initiation point for formation of the dynamin-based ring. C. merolae contains a single peroxisome, the division of which can be highly synchronized by light-dark stimulation; thus, intact POD machinery can be isolated in bulk. Dynamin-based ring homeostasis is maintained by the turnover of the GTP-bound form of the dynamin-related protein Dnm1 between the cytosol and division machinery via the DOC. A single DOC is formed on the POD machinery with a diameter of 500-700 nm, and the dynamin-based ring is unidirectionally elongated from the DOC in a manner that is dependent on GTP concentration. During the later step of membrane fission, the second DOC is formed and constructs the double dynamin-based ring to make the machinery thicker. These findings provide new insights to define fundamental mechanisms underlying the dynamin-based membrane fission in eukaryotic cells.


Subject(s)
Algal Proteins/metabolism , Dynamins/metabolism , Peroxisomes/metabolism , Rhodophyta/metabolism , Biological Assay , Cell Cycle , Cytosol/metabolism , Guanosine Triphosphate/metabolism , Models, Biological
17.
R Soc Open Sci ; 3(5): 160130, 2016 May.
Article in English | MEDLINE | ID: mdl-27293794

ABSTRACT

Symbiont transmission is a key event for understanding the processes underlying symbiotic associations and their evolution. However, our understanding of the mechanisms of symbiont transmission remains still fragmentary. The deep-sea clam Calyptogena okutanii harbours obligate sulfur-oxidizing intracellular symbiotic bacteria in the gill epithelial cells. In this study, we determined the localization of their symbiont associating with the spawned eggs, and the population size of the symbiont transmitted via the eggs. We show that the symbionts are located on the outer surface of the egg plasma membrane at the vegetal pole, and that each egg carries approximately 400 symbiont cells, each of which contains close to 10 genomic copies. The very small population size of the symbiont transmitted via the eggs might narrow the bottleneck and increase genetic drift, while polyploidy and its transient extracellular lifestyle might slow the rate of genome reduction. Additionally, the extracellular localization of the symbiont on the egg surface may increase the chance of symbiont exchange. This new type of extracellular transovarial transmission provides insights into complex interactions between the host and symbiont, development of both host and symbiont, as well as the population dynamics underlying genetic drift and genome evolution in microorganisms.

19.
Genome Biol Evol ; 6(10): 2731-40, 2014 Sep 29.
Article in English | MEDLINE | ID: mdl-25267447

ABSTRACT

The primitive red alga Cyanidioschyzon merolae inhabits acidic hot springs and shows robust resistance to heat shock treatments up to 63 °C. Microarray analysis was performed to identify the key genes underlying the high temperature tolerance of this organism. Among the upregulated genes that were identified, we focused on two small heat shock proteins (sHSPs) that belong to a unique class of HSP families. These two genes are located side by side in an inverted repeat orientation on the same chromosome and share a promoter. These two genes were simultaneously and rapidly upregulated in response to heat shock treatment (>1,000-fold more than the control). Interestingly, upregulation appeared to be triggered not by a difference in temperatures, but rather by the absolute temperature. Similar sHSP structural genes have been reported in the green alga Chlamydomonas reinhardtii, but the threshold temperature for the expression of these sHSP-encoding genes in Ch. reinhardtii was different from the threshold temperature for the expression of the sHSP genes from Cy. merolae. These results indicate the possible importance of an absolute temperature sensing system in the evolution and tolerance of high-temperature conditions among unicellular microalgae.


Subject(s)
Chlamydomonas reinhardtii/metabolism , Chlamydomonas/metabolism , Heat-Shock Proteins, Small/metabolism , Plant Proteins/metabolism , Amino Acid Sequence , Gene Expression Regulation, Plant/physiology , Molecular Sequence Data , Phylogeny , Plant Proteins/chemistry , Plant Proteins/classification , Temperature
20.
J Plant Physiol ; 171(18): 1685-92, 2014 Nov 15.
Article in English | MEDLINE | ID: mdl-25209695

ABSTRACT

The unicellular green alga Chlamydomonas reinhardtii has a haplontic life cycle, and forms diploid zygotes for reproduction. The zygospore, a sporulating zygote, begins germination in response to light signals, generating haploid progenies and inducing several cell-biological events; e.g., DNA synthesis and meiotic division, successively. Their regulatory mechanisms remain largely unknown, so we focused on the early stages of germination and analyzed the dynamics of gene expression associated with the germination process. The gene expression levels of zygospores at 1 and 6h after light exposure were analyzed by a next-generation sequencing platform, the 454 GS Junior. At 6h, the photosynthesis pathway, including its antenna proteins and two methionine metabolism-related genes (methionine synthase and sulfite reductase), were up-regulated compared to 1h after light exposure. Meanwhile, three uncharacterized genes that contained an antibiotic biosynthesis monooxygenase domain and an HSP20/alpha crystallin family protein were specifically expressed at 1h after light exposure. These gene expressions were also verified by quantitative real-time PCR analysis. These results suggest that the photosynthesis and methionine synthesis pathways, both of which occur in the chloroplast, are activated in zygospores at around 6h after light exposure, and that some polyketides and/or a small heat shock protein may be related to the initiation of zygospore germination.


Subject(s)
Chlamydomonas reinhardtii/physiology , Germination , RNA, Messenger/genetics , Base Sequence , Chlamydomonas reinhardtii/genetics , DNA Primers , Genes, Plant , Real-Time Polymerase Chain Reaction , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...