Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
J Cell Sci ; 133(17)2020 09 09.
Article in English | MEDLINE | ID: mdl-32801125

ABSTRACT

Mechanical stresses, including high hydrostatic pressure, elicit diverse physiological effects on organisms. Gtr1, Gtr2, Ego1 (also known as Meh1) and Ego3 (also known as Slm4), central regulators of the TOR complex 1 (TORC1) nutrient signaling pathway, are required for the growth of Saccharomyces cerevisiae cells under high pressure. Here, we showed that a pressure of 25 MPa (∼250 kg/cm2) stimulates TORC1 to promote phosphorylation of Sch9, which depends on the EGO complex (EGOC) and Pib2. Incubation of cells at this pressure aberrantly increased glutamine and alanine levels in the ego1Δ, gtr1Δ, tor1Δ and pib2Δ mutants, whereas the polysome profiles were unaffected. Moreover, we found that glutamine levels were reduced by combined deletions of EGO1, GTR1, TOR1 and PIB2 with GLN3 These results suggest that high pressure leads to the intracellular accumulation of amino acids. Subsequently, Pib2 loaded with glutamine stimulates the EGOC-TORC1 complex to inactivate Gln3, downregulating glutamine synthesis. Our findings illustrate the regulatory circuit that maintains intracellular amino acid homeostasis and suggest critical roles for the EGOC-TORC1 and Pib2-TORC1 complexes in the growth of yeast under high hydrostatic pressure.


Subject(s)
Monomeric GTP-Binding Proteins , Saccharomyces cerevisiae Proteins , Amino Acids , Homeostasis , Hydrostatic Pressure , Mechanistic Target of Rapamycin Complex 1 , Monomeric GTP-Binding Proteins/metabolism , Protein Serine-Threonine Kinases , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
2.
Sci Rep ; 9(1): 18341, 2019 12 04.
Article in English | MEDLINE | ID: mdl-31797992

ABSTRACT

Previously, we isolated 84 deletion mutants in Saccharomyces cerevisiae auxotrophic background that exhibited hypersensitive growth under high hydrostatic pressure and/or low temperature. Here, we observed that 24 deletion mutants were rescued by the introduction of four plasmids (LEU2, HIS3, LYS2, and URA3) together to grow at 25 MPa, thereby suggesting close links between the genes and nutrient uptake. Most of the highly ranked genes were poorly characterized, including MAY24/YPR153W. May24 appeared to be localized in the endoplasmic reticulum (ER) membrane. Therefore, we designated this gene as EHG (ER-associated high-pressure growth gene) 1. Deletion of EHG1 led to reduced nutrient transport rates and decreases in the nutrient permease levels at 25 MPa. These results suggest that Ehg1 is required for the stability and functionality of the permeases under high pressure. Ehg1 physically interacted with nutrient permeases Hip1, Bap2, and Fur4; however, alanine substitutions for Pro17, Phe19, and Pro20, which were highly conserved among Ehg1 homologues in various yeast species, eliminated interactions with the permeases as well as the high-pressure growth ability. By functioning as a novel chaperone that facilitated coping with high-pressure-induced perturbations, Ehg1 could exert a stabilizing effect on nutrient permeases when they are present in the ER.


Subject(s)
Biological Transport/genetics , Endoplasmic Reticulum/genetics , Membrane Transport Proteins/genetics , Saccharomyces cerevisiae/genetics , Amino Acid Sequence/genetics , Amino Acid Transport Systems/genetics , Endoplasmic Reticulum/enzymology , Membrane Proteins/genetics , Membranes/enzymology , Pressure , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae Proteins/genetics
3.
Biochim Biophys Acta Biomembr ; 1859(10): 2076-2085, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28754537

ABSTRACT

Tryptophan is an essential amino acid in humans and an important serotonin and melatonin precursor. Monocarboxylate transporter MCT10 is a member of the SLC16A family proteins that mediates low-affinity tryptophan transport across basolateral membranes of kidney, small intestine, and liver epithelial cells, although the precise transport mechanism remains unclear. Here we developed a simple functional assay to analyze tryptophan transport by human MCT10 using a deletion mutant for the high-affinity tryptophan permease Tat2 in Saccharomyces cerevisiae. tat2Δtrp1 cells are defective in growth in YPD medium because tyrosine present in the medium competes for the low-affinity tryptophan permease Tat1 with tryptophan. MCT10 appeared to allow growth of tat2Δtrp1 cells in YPD medium, and accumulate in cells deficient for Rsp5 ubiquitin ligase. These results suggest that MCT10 is functional in yeast, and is subject to ubiquitin-dependent quality control. Whereas growth of Tat2-expressing cells was significantly impaired by neutral pH, that of MCT10-expressing cells was nearly unaffected. This property is consistent with the transport mechanism of MCT10 via facilitated diffusion without a need for pH gradient across the plasma membrane. Single-nucleotide polymorphisms (SNPs) are known to occur in the human MCT10 coding region. Among eight SNP amino acid changes in MCT10, the N81K mutation completely abrogated tryptophan import without any abnormalities in the expression or localization. In the MCT10 modeled structure, N81 appeared to protrude into the putative trajectory of tryptophan. Plasma membrane localization of MCT10 and the variant proteins was also verified in human embryonic kidney 293T cells.


Subject(s)
Amino Acid Transport Systems, Neutral/metabolism , Amino Acid Transport Systems/metabolism , Amino Acids/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Amino Acid Transport Systems, Neutral/genetics , Cell Line , Cell Membrane/metabolism , HEK293 Cells , Humans , Polymorphism, Single Nucleotide/genetics , Tryptophan/metabolism , Tyrosine/metabolism , Ubiquitin/metabolism , Ubiquitin-Protein Ligase Complexes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL