Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
mSystems ; 8(6): e0081723, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-37843256

ABSTRACT

IMPORTANCE: The elucidation of the molecular basis of virus-host coevolutionary interactions is boosted with state-of-the-art sequencing technologies. However, the sequence-only information is often insufficient to output a conclusive argument without biochemical characterizations. We proposed a 1-day and one-pot approach to confirm the exact function of putative restriction-modification (R-M) genes that presumably mediate microbial coevolution. The experiments mainly focused on a series of putative R-M enzymes from a deep-sea virus and its host bacterium. The results quickly unveiled unambiguous substrate specificities, superior catalytic performance, and unique sequence preferences for two new restriction enzymes (capable of cleaving DNA) and two new methyltransferases (capable of modifying DNA with methyl groups). The reality of the functional R-M system reinforced a model of mutually beneficial interactions with the virus in the deep-sea microbial ecosystem. The cell culture-independent approach also holds great potential for exploring novel and biotechnologically significant R-M enzymes from microbial dark matter.


Subject(s)
Bacteria , DNA Restriction-Modification Enzymes , Host Microbial Interactions , Viruses , DNA , DNA Restriction Enzymes/chemistry , DNA Restriction-Modification Enzymes/genetics , Ecosystem , Methyltransferases , Oceans and Seas , Bacteria/genetics , Bacteria/virology , Viruses/genetics , Host Microbial Interactions/genetics
2.
J Bacteriol ; 204(3): e0060521, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35225690

ABSTRACT

Light harvesting and charge separation are functions of chlorophyll and bacteriochlorophyll pigments. While most photosynthetic organisms use (bacterio)chlorophylls with a phytyl (2-phytenyl) group as the hydrophobic isoprenoid tail, Halorhodospira halochloris, an anoxygenic photosynthetic bacterium belonging to Gammaproteobacteria, produces bacteriochlorophylls with a unique 6,7,14,15-tetrahydrogeranylgeranyl (2,10-phytadienyl) tail. Geranylgeranyl reductase (GGR), encoded by the bchP gene, catalyzes hydrogenation at three unsaturated C=C bonds of a geranylgeranyl group, giving rise to the phytyl tail. In this study, we discovered that H. halochloris GGR exhibits only partial hydrogenation activities, resulting in the tetrahydrogeranylgeranyl tail formation. We hypothesized that the hydrogenation activity of H. halochloris GGR differed from that of Chlorobaculum tepidum GGR, which also produces a pigment with partially reduced hydrophobic tails (2,6-phytadienylated chlorophyll a). An engineered GGR was also constructed and demonstrated to perform only single hydrogenation, resulting in the dihydrogeranylgeranyl tail formation. H. halochloris original and variant GGRs shed light on GGR catalytic mechanisms and offer prospective bioengineering tools in the microbial production of isoprenoid compounds. IMPORTANCE Geranylgeranyl reductase (GGR) catalyzes the hydrogenation of carbon-carbon double bonds of unsaturated hydrocarbons of isoprenoid compounds, including α-tocopherols, phylloquinone, archaeal cell membranes, and (bacterio)chlorophyll pigments in various organisms. GGRs in photosynthetic organisms, including anoxygenic phototrophic bacteria, cyanobacteria, and plants perform successive triple hydrogenation to produce chlorophylls and bacteriochlorophylls with a phytyl chain. Here, we demonstrated that the GGR of a gammaproteobacterium Halorhodospira halochloris catalyzed unique double hydrogenation to produce bacteriochlorophylls with a tetrahydrogeranylgeranyl tail. We also constructed a variant enzyme derived from H. halochloris GGR that performs only single hydrogenation. The results of this study provide new insights into catalytic mechanisms of multiposition reductions by a single enzyme.


Subject(s)
Bacteriochlorophylls , Chlorobi , Bacteriochlorophylls/chemistry , Carbon , Chlorobi/metabolism , Chlorophyll/chemistry , Chlorophyll/metabolism , Chlorophyll A , Ectothiorhodospiraceae , Hydrogenation , Oxidoreductases , Prospective Studies , Proteobacteria/metabolism , Terpenes
3.
Environ Microbiol ; 23(8): 4151-4167, 2021 08.
Article in English | MEDLINE | ID: mdl-33939871

ABSTRACT

Microbial decomposition of allochthonous plant components imported into the aquatic environment is one of the vital steps of the carbon cycle on earth. To expand the knowledge of the biodegradation of complex plant materials in aquatic environments, we recovered a sunken wood from the bottom of Otsuchi Bay, situated in northeastern Japan in 2012. We isolated Sphingobium with high ferulic acid esterase activity. The strain, designated as OW59, grew on various aromatic compounds and sugars, occurring naturally in terrestrial plants. A genomic study of the strain suggested its role in degrading hemicelluloses. We identified a gene encoding a non-secretory tannase-family α/ß hydrolase, which exhibited ferulic acid esterase activity. This enzyme shares the consensus catalytic triad (Ser-His-Asp) within the tannase family block X in the ESTHER database. The molecules, which had the same calculated elemental compositions, were produced consistently in both the enzymatic and microbial degradation of rice straw crude extracts. The non-secretory tannase-family α/ß hydrolase activity may confer an important phenotypic feature on the strain to accelerate plant biomass degradation. Our study provides insights into the underlying biodegradation process of terrestrial plant polymers in aquatic environments.


Subject(s)
Oryza , Carboxylic Ester Hydrolases/genetics , Esters , Hydrolases
4.
PLoS One ; 15(12): e0244464, 2020.
Article in English | MEDLINE | ID: mdl-33382779

ABSTRACT

Restriction endonucleases play a central role in the microbial immune system against viruses and are widely used in DNA specific cleavage, which is called restriction digestion, for genetic engineering. Herein, we applied digital cell-free protein synthesis as an easy-to-use orthogonal readout means to assess the restriction digest efficiency, a new application of digital bioassays. The digital counting principle enabled an unprecedentedly sensitive trace analysis of undigested DNA at the single-molecule level in a PCR-free manner. Our approach can quantify the template DNA of much lower concentrations that cannot be detected by ensemble-based methods such as gold-standard DNA electrophoresis techniques. The sensitive and quantitative measurements revealed a considerable variation in the digest efficiency among restriction endonucleases, from less than 70% to more than 99%. Intriguingly, none of them showed truly complete digestion within reasonably long periods of reaction time. The same rationale was extended to a multiplexed assay and applicable to any DNA-degrading or genome-editing enzymes. The enzyme kinetic parameters and the flanking sequence-dependent digest efficiency can also be interrogated with the proposed digital counting method. The absolute number of residual intact DNA molecules per microliter was concluded to be at least 107, drawing attention to the residual issue of genetic materials associated with the interpretation of nucleases' behaviors and functions in daily genetic engineering experiments.


Subject(s)
DNA Restriction Enzymes/metabolism , DNA/analysis , Genetic Engineering/methods , Single Molecule Imaging/methods , CRISPR-Cas Systems/genetics , Cell-Free System/enzymology , DNA/metabolism , Microscopy, Fluorescence/methods
5.
J Vis Exp ; (160)2020 06 20.
Article in English | MEDLINE | ID: mdl-32628171

ABSTRACT

Advances in spatial resolution and detection sensitivity of scientific instrumentation make it possible to apply small reactors for biological and chemical research. To meet the demand for high-performance microreactors, we developed a femtoliter droplet array (FemDA) device and exemplified its application in massively parallel cell-free protein synthesis (CFPS) reactions. Over one million uniform droplets were readily generated within a finger-sized area using a two-step oil-sealing protocol. Every droplet was anchored in a femtoliter microchamber composed of a hydrophilic bottom and a hydrophobic sidewall. The hybrid hydrophilic-in-hydrophobic structure and the dedicated sealing oils and surfactants are crucial for stably retaining the femtoliter aqueous solution in the femtoliter space without evaporation loss. The femtoliter configuration and the simple structure of the FemDA device allowed minimal reagent consumption. The uniform dimension of the droplet reactors made large-scale quantitative and time-course measurements convincing and reliable. The FemDA technology correlated the protein yield of the CFPS reaction with the number of DNA molecules in each droplet. We streamlined the procedures about the microfabrication of the device, the formation of the femtoliter droplets, and the acquisition and analysis of the microscopic image data. The detailed protocol with the optimized low running cost makes the FemDA technology accessible to everyone who has standard cleanroom facilities and a conventional fluorescence microscope in their own place.


Subject(s)
DNA/chemistry , Microfluidics/methods , Microtechnology/instrumentation , Protein Biosynthesis , Proteins/metabolism , DNA/metabolism , Humans , Hydrophobic and Hydrophilic Interactions , Microfluidics/instrumentation , Microscopy, Fluorescence , Water/chemistry
6.
Genome Announc ; 6(17)2018 Apr 26.
Article in English | MEDLINE | ID: mdl-29700143

ABSTRACT

Sphingobium sp. strain YG1 is a lignin model dimer-metabolizing bacterium newly isolated from sediment in Kagoshima, Japan, at a depth of 102 m. Here, we report the complete genome nucleotide sequence of strain YG1.

7.
Genome Announc ; 6(12)2018 Mar 22.
Article in English | MEDLINE | ID: mdl-29567747

ABSTRACT

Altererythrobacter sp. strain B11 is an aromatic monomer-degrading bacterium newly isolated from sediment under the seabed off Kashima, Japan, at a depth of 2,100 m. Here, we report the complete nucleotide sequence of the genome of strain B11.

8.
ChemSusChem ; 10(2): 425-433, 2017 01 20.
Article in English | MEDLINE | ID: mdl-27878983

ABSTRACT

Enzymatic catalysis is an ecofriendly strategy for the production of high-value low-molecular-weight aromatic compounds from lignin. Although well-definable aromatic monomers have been obtained from synthetic lignin-model dimers, enzymatic-selective synthesis of platform monomers from natural lignin has not been accomplished. In this study, we successfully achieved highly specific synthesis of aromatic monomers with a phenylpropane structure directly from natural lignin using a cascade reaction of ß-O-4-cleaving bacterial enzymes in one pot. Guaiacylhydroxylpropanone (GHP) and the GHP/syringylhydroxylpropanone (SHP) mixture are exclusive monomers from lignin isolated from softwood (Cryptomeria japonica) and hardwood (Eucalyptus globulus). The intermediate products in the enzymatic reactions show the capacity to accommodate highly heterologous substrates at the substrate-binding sites of the enzymes. To demonstrate the applicability of GHP as a platform chemical for bio-based industries, we chemically generate value-added GHP derivatives for bio-based polymers. Together with these chemical conversions for the valorization of lignin-derived phenylpropanone monomers, the specific and enzymatic production of the monomers directly from natural lignin is expected to provide a new stream in "white biotechnology" for sustainable biorefineries.


Subject(s)
Acetone/chemistry , Biocatalysis , Glutathione Transferase/metabolism , Lignin/chemistry , Propiophenones/chemistry , Cryptomeria/enzymology , Eucalyptus/enzymology , Hydrogen-Ion Concentration , Temperature
9.
Genome Announc ; 3(1)2015 Jan 15.
Article in English | MEDLINE | ID: mdl-25593249

ABSTRACT

This report describes the draft genome sequence of Novosphingobium sp. strain MBES04, isolated from sunken wood from Suruga Bay, Japan, which is capable of degrading a wide range of lignin-related aromatic monomers. The draft genome sequence contains 5,361,448 bp, with a G+C content of 65.4%.

SELECTION OF CITATIONS
SEARCH DETAIL
...