Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 29(61): e202302115, 2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37548079

ABSTRACT

Four A-π-D-π-A type small organic molecules with 1,8-naphthalimide motifs were successfully synthesised. The designed compounds are built of two 1,8-naphthalimide units linked via ethynyl π-linkages with selected functionalised donor motifs i. e. 2,2'-bithiophene, fluorene, phenothiazine and carbazole derivative. The synthesis based on Sonogashira cross-coupling allowed us to obtain the presented dyes with good yields. The resulting symmetrical small molecules' optical, electrochemical and thermal properties were thoroughly investigated, and their potential applicability for the OLED devices was demonstrated. In addition, the relationship between molecular structure and properties was considered by employing experimental and theoretical studies. As a result of using various donor groups, it was possible to achieve efficient electroluminescence in the range from green (DEV4) to orange-red light (DEV3) with a maximum luminance of 3 820 cd/m2 for DEV4. Upon the insertion of an acetylene linker to the designed molecules, the free rotation of D and A fragments, and hence the effective π-electron communication within the entire molecule, is possible, which was confirmed by DFT studies. The obtained dyes are characterised by high thermal stability, reversible oxidation-reduction process, satisfactory optoelectronic properties and good solubility in organic solvents, which is advisable for the application in small molecular organic light-emitting diodes (SM-OLEDs) technology.

2.
Molecules ; 28(6)2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36985520

ABSTRACT

The involvement of 1,3-dipolar cycloaddition (1,3-DP), double bond migration, metathesis, and nitrile oxide (including in situ-generated nitrile oxide) as dipoles, together with the C=C bond containing dipolarophiles, in the syntheses of 2-isoxazolines is presented. Methods for synthesizing isoxazolines (other than 1,3-DP cycloaddition) were also presented briefly. Various methods of nitrile oxide preparation, especially in situ-generated procedures, are presented. Special attention was paid to the application of various combinations of 1,3-DP cycloaddition with double bond migration (DBM) and with alkene metathesis (AM) in the syntheses of trisubstituted isoxazolines. Allyl compounds of the type QCH2CH=CH2 (Q = ArO, ArS, Ar, and others) play the role of dipolarophile precursors in the combinations of DPC mentioned, DBM and AM. Mechanistic aspects of cycloadditions, i.e., concerted or stepwise reaction mechanism and their regio- and stereoselectivity are also discussed from experimental and theoretical points of view. Side reactions accompanying cycloaddition, especially nitrile oxide dimerization, are considered. 2-Isoxazoline applications in organic synthesis and their biological activity, broad utility in medicine, agriculture, and other fields were also raised. Some remaining challenges in the field of 1,3-DP cycloaddition in the syntheses of isoxazolines are finally discussed.

3.
Materials (Basel) ; 15(1)2021 Dec 27.
Article in English | MEDLINE | ID: mdl-35009318

ABSTRACT

Phenyl, naphthyl, polyarylphenyl, coronene, and other aromatic and polyaromatic moieties primarily influence the final materials' properties. One of the synthetic tools used to implement (hetero)aromatic moieties into final structures is Diels-Alder cycloaddition (DAC), typically combined with Scholl dehydrocondensation. Substituted 2-pyranones, 1,1-dioxothiophenes, and, especially, 1,3-cyclopentadienones are valuable substrates for [4 + 2] cycloaddition, leading to multisubstituted derivatives of benzene, naphthalene, and other aromatics. Cycloadditions of dienes can be carried out with extrusion of carbon dioxide, carbon oxide, or sulphur dioxide. When pyranones, dioxothiophenes, or cyclopentadienones and DA cycloaddition are aided with acetylenes including masked ones, conjugated or isolated diynes, or polyynes and arynes, aromatic systems are obtained. This review covers the development and the current state of knowledge regarding thermal DA cycloaddition of dienes mentioned above and dienophiles leading to (hetero)aromatics via CO, CO2, or SO2 extrusion. Particular attention was paid to the role that introduced aromatic moieties play in designing molecular structures with expected properties. Undoubtedly, the DAC variants described in this review, combined with other modern synthetic tools, constitute a convenient and efficient way of obtaining functionalized nanomaterials, continually showing the potential to impact materials sciences and new technologies in the nearest future.

SELECTION OF CITATIONS
SEARCH DETAIL
...