Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
J Autism Dev Disord ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38809474

ABSTRACT

Specialized multidisciplinary supports are important for long-term outcomes for autistic youth. Although family and child factors predict service utilization in autism, little is known with respect to youth with rare, autism-associated genetic variants, who frequently have increased psychiatric, developmental, and behavioral needs. We investigate the impact of family factors on service utilization to determine whether caregiver (autistic features, education, income) and child (autistic features, sex, age, IQ, co-occurring conditions) factors predicted service type (e.g., speech, occupational, behavioral) and intensity (hours/year) among children with autism-associated variants (N = 125), some of whom also had a confirmed ASD diagnosis. Analyses revealed variability in the types of services used across a range of child demographic, behavioral, and mental health characteristics. Speech therapy was the most received service (87.2%). Importantly, behavior therapy was the least received service and post-hoc analyses revealed that use of this therapy was uniquely predicted by ASD diagnosis. However, once children received a particular service, there was largely comparable intensity of services, independent of caregiver and child factors. Findings suggest that demographic and clinical factors impact families' ability to obtain services, with less impact on the intensity of services received. The low receipt of therapies that specifically address core support needs in autism (i.e., behavior therapy) indicates more research is needed on the availability of these services for youth with autism-associated variants, particularly for those who do not meet criteria for an ASD diagnosis but do demonstrate elevated and impactful child autistic features as compared to the general population.

2.
J Neurodev Disord ; 16(1): 15, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622540

ABSTRACT

BACKGROUND: Neurodevelopmental conditions such as intellectual disability (ID) and autism spectrum disorder (ASD) can stem from a broad array of inherited and de novo genetic differences, with marked physiological and behavioral impacts. We currently know little about the psychiatric phenotypes of rare genetic variants associated with ASD, despite heightened risk of psychiatric concerns in ASD more broadly. Understanding behavioral features of these variants can identify shared versus specific phenotypes across gene groups, facilitate mechanistic models, and provide prognostic insights to inform clinical practice. In this paper, we evaluate behavioral features within three gene groups associated with ID and ASD - ADNP, CHD8, and DYRK1A - with two aims: (1) characterize phenotypes across behavioral domains of anxiety, depression, ADHD, and challenging behavior; and (2) understand whether age and early developmental milestones are associated with later mental health outcomes. METHODS: Phenotypic data were obtained for youth with disruptive variants in ADNP, CHD8, or DYRK1A (N = 65, mean age = 8.7 years, 40% female) within a long-running, genetics-first study. Standardized caregiver-report measures of mental health features (anxiety, depression, attention-deficit/hyperactivity, oppositional behavior) and developmental history were extracted and analyzed for effects of gene group, age, and early developmental milestones on mental health features. RESULTS: Patterns of mental health features varied by group, with anxiety most prominent for CHD8, oppositional features overrepresented among ADNP, and attentional and depressive features most prominent for DYRK1A. For the full sample, age was positively associated with anxiety features, such that elevations in anxiety relative to same-age and same-sex peers may worsen with increasing age. Predictive utility of early developmental milestones was limited, with evidence of early language delays predicting greater difficulties across behavioral domains only for the CHD8 group. CONCLUSIONS: Despite shared associations with autism and intellectual disability, disruptive variants in ADNP, CHD8, and DYRK1A may yield variable psychiatric phenotypes among children and adolescents. With replication in larger samples over time, efforts such as these may contribute to improved clinical care for affected children and adolescents, allow for earlier identification of emerging mental health difficulties, and promote early intervention to alleviate concerns and improve quality of life.


Subject(s)
Autism Spectrum Disorder , Intellectual Disability , Neurodevelopmental Disorders , Adolescent , Child , Female , Humans , Male , Autism Spectrum Disorder/complications , DNA-Binding Proteins/genetics , Homeodomain Proteins/genetics , Intellectual Disability/genetics , Intellectual Disability/complications , Mental Health , Nerve Tissue Proteins/genetics , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/complications , Quality of Life , Transcription Factors/genetics
3.
Autism Res ; 16(11): 2090-2099, 2023 11.
Article in English | MEDLINE | ID: mdl-37676241

ABSTRACT

Individuals diagnosed with autism often display alterations in visual spatial attention toward visual stimuli, but the underlying cause of these differences remains unclear. Recent evidence has demonstrated that covert spatial attention, rather than remaining constant at a cued location, samples stimuli rhythmically at a frequency of 4-8 Hz (theta). Here we tested whether rhythmic sampling of attention is altered in autism. Participants were asked to monitor three locations to detect a brief target presented 300-1200 ms after a spatial cue. Visual attention was oriented to the cue and modified visual processing at the cued location, consistent with previous studies. We measured detection performance at different cue-target intervals when the target occurred at the cued location. Significant oscillations in detection performance were identified using both a traditional time-shuffled approach and a new autoregressive surrogate method developed by Brookshire in 2022. We found that attention enhances behavioral performance rhythmically at the same frequency in both autism and control group at the cued location. However, rhythmic temporal structure was not observed in a subgroup of autistic individuals with co-occurring attention-deficit/hyperactivity disorder (ADHD). Our results imply that intrinsic brain rhythms which organize neural activity into alternating attentional states is functional in autistic individuals, but may be altered in autistic participants who have a concurrent ADHD diagnosis.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Humans , Autism Spectrum Disorder/complications , Brain , Visual Perception , Reaction Time , Cues
4.
Autism Res ; 16(8): 1488-1500, 2023 08.
Article in English | MEDLINE | ID: mdl-37497568

ABSTRACT

Likely gene-disrupting (LGD) variants in DYRK1A are causative of DYRK1A syndrome and associated with autism spectrum disorder (ASD) and intellectual disability (ID). While many individuals with DYRK1A syndrome are diagnosed with ASD, they may present with a unique profile of ASD traits. We present a comprehensive characterization of the ASD profile in children and young adults with LGDs in DYRK1A. Individuals with LGD variants in DYRK1A (n = 29) were compared to children who had ASD with no known genetic cause, either with low nonverbal IQ (n = 14) or average or above nonverbal IQ (n = 41). ASD was assessed using the ADOS-2, ADI-R, SRS-2, SCQ, and RBS-R. Quantitative score comparisons were conducted, as were qualitative analyses of clinicians' behavioral observations. Diagnosis of ASD was confirmed in 85% and ID was confirmed in 89% of participants with DYRK1A syndrome. Individuals with DYRK1A syndrome showed broadly similar social communication behaviors to children with idiopathic ASD and below-average nonverbal IQ, with specific challenges noted in social reciprocity and nonverbal communication. Children with DYRK1A syndrome also showed high rates of sensory-seeking behaviors. Phenotypic characterization of individuals with DYRK1A syndrome may provide additional information on mechanisms contributing to co-occurring ASD and ID and contribute to the identification of genetic predictors of specific ASD traits.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Intellectual Disability , Humans , Autism Spectrum Disorder/complications , Autistic Disorder/genetics , Autistic Disorder/complications , Intellectual Disability/epidemiology , Intellectual Disability/genetics , Intellectual Disability/complications , Phenotype , Social Behavior , Dyrk Kinases
5.
J Autism Dev Disord ; 2023 Apr 08.
Article in English | MEDLINE | ID: mdl-37031308

ABSTRACT

We aimed to identify unique constellations of sensory phenotypes for genetic etiologies associated with diagnoses of autism spectrum disorder (ASD) and intellectual disability (ID). Caregivers reported on sensory behaviors via the Sensory Profile for 290 participants (younger than 25 years of age) with ASD and/or ID diagnoses, of which ~ 70% have a known pathogenic genetic etiology. Caregivers endorsed poor registration (i.e., high sensory threshold, passive behaviors) for all genetic subgroups relative to an "idiopathic" comparison group with an ASD diagnosis and without a known genetic etiology. Genetic profiles indicated prominent sensory seeking in ADNP, CHD8, and DYRK1A, prominent sensory sensitivities in SCN2A, and fewer sensation avoidance behaviors in GRIN2B (relative to the idiopathic ASD comparison group).

6.
Biol Psychiatry ; 94(10): 769-779, 2023 11 15.
Article in English | MEDLINE | ID: mdl-36924980

ABSTRACT

BACKGROUND: Autism spectrum disorder is characterized by deficits in social communication and restricted or repetitive behaviors. Due to the extremely high genetic and phenotypic heterogeneity, it is critical to pinpoint the genetic factors for understanding the pathology of these disorders. METHODS: We analyzed the exomes generated by the SPARK (Simons Powering Autism Research) project and performed a meta-analysis with previous data. We then generated 1 zebrafish knockout model and 3 mouse knockout models to examine the function of GIGYF1 in neurodevelopment and behavior. Finally, we performed whole tissue and single-nucleus transcriptome analysis to explore the molecular and cellular function of GIGYF1. RESULTS: GIGYF1 variants are significantly associated with various neurodevelopmental disorder phenotypes, including autism, global developmental delay, intellectual disability, and sleep disturbance. Loss of GIGYF1 causes similar behavioral effects in zebrafish and mice, including elevated levels of anxiety and reduced social engagement, which is reminiscent of the behavioral deficits in human patients carrying GIGYF1 variants. Moreover, excitatory neuron-specific Gigyf1 knockout mice recapitulate the increased repetitive behaviors and impaired social memory, suggesting a crucial role of Gigyf1 in excitatory neurons, which correlates with the observations in single-nucleus RNA sequencing. We also identified a series of downstream target genes of GIGYF1 that affect many aspects of the nervous system, especially synaptic transmission. CONCLUSIONS: De novo variants of GIGYF1 are associated with neurodevelopmental disorders, including autism spectrum disorder. GIGYF1 is involved in neurodevelopment and animal behavior, potentially through regulating hippocampal CA2 neuronal numbers and disturbing synaptic transmission.


Subject(s)
Autism Spectrum Disorder , Carrier Proteins , Animals , Humans , Mice , Autism Spectrum Disorder/genetics , Autistic Disorder/genetics , Behavior, Animal/physiology , Carrier Proteins/genetics , Disease Models, Animal , Memory Disorders/genetics , Mice, Knockout/genetics , Zebrafish/genetics
8.
Sci Adv ; 8(33): eabo7112, 2022 08 19.
Article in English | MEDLINE | ID: mdl-35977029

ABSTRACT

Stress granules (SGs) are cytoplasmic assemblies in response to a variety of stressors. We report a new neurodevelopmental disorder (NDD) with common features of language problems, intellectual disability, and behavioral issues caused by de novo likely gene-disruptive variants in UBAP2L, which encodes an essential regulator of SG assembly. Ubap2l haploinsufficiency in mouse led to social and cognitive impairments accompanied by disrupted neurogenesis and reduced SG formation during early brain development. On the basis of data from 40,853 individuals with NDDs, we report a nominally significant excess of de novo variants within 29 genes that are not implicated in NDDs, including 3 essential genes (G3BP1, G3BP2, and UBAP2L) in the core SG interaction network. We validated that NDD-related de novo variants in newly implicated and known NDD genes, such as CAPRIN1, disrupt the interaction of the core SG network and interfere with SG formation. Together, our findings suggest the common SG pathology in NDDs.


Subject(s)
DNA Helicases , Neurodevelopmental Disorders , Animals , Mice , Neurodevelopmental Disorders/genetics , Poly-ADP-Ribose Binding Proteins/genetics , RNA Helicases/genetics , RNA Recognition Motif Proteins , Stress Granules
9.
J Clin Invest ; 132(19)2022 10 03.
Article in English | MEDLINE | ID: mdl-35917186

ABSTRACT

Autism spectrum disorder (ASD) represents a group of neurodevelopmental phenotypes with a strong genetic component. An excess of likely gene-disruptive (LGD) mutations in GIGYF1 was implicated in ASD. Here, we report that GIGYF1 is the second-most mutated gene among known ASD high-confidence risk genes. We investigated the inheritance of 46 GIGYF1 LGD variants, including the highly recurrent mutation c.333del:p.L111Rfs*234. Inherited GIGYF1 heterozygous LGD variants were 1.8 times more common than de novo mutations. Among individuals with ASD, cognitive impairments were less likely in those with GIGYF1 LGD variants relative to those with other high-confidence gene mutations. Using a Gigyf1 conditional KO mouse model, we showed that haploinsufficiency in the developing brain led to social impairments without significant cognitive impairments. In contrast, homozygous mice showed more severe social disability as well as cognitive impairments. Gigyf1 deficiency in mice led to a reduction in the number of upper-layer cortical neurons, accompanied by a decrease in proliferation and increase in differentiation of neural progenitor cells. We showed that GIGYF1 regulated the recycling of IGF-1R to the cell surface. KO of GIGYF1 led to a decreased level of IGF-1R on the cell surface, disrupting the IGF-1R/ERK signaling pathway. In summary, our findings show that GIGYF1 is a regulator of IGF-1R recycling. Haploinsufficiency of GIGYF1 was associated with autistic behavior, likely through interference with IGF-1R/ERK signaling pathway.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Animals , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/metabolism , Autistic Disorder/genetics , Autistic Disorder/metabolism , Mice , Neurons/metabolism , Phenotype , Signal Transduction
10.
Genet Med ; 24(8): 1753-1760, 2022 08.
Article in English | MEDLINE | ID: mdl-35579625

ABSTRACT

PURPOSE: Genome-wide sequencing is increasingly being performed during pregnancy to identify the genetic cause of congenital anomalies. The interpretation of prenatally identified variants can be challenging and is hampered by our often limited knowledge of prenatal phenotypes. To better delineate the prenatal phenotype of Coffin-Siris syndrome (CSS), we collected clinical data from patients with a prenatal phenotype and a pathogenic variant in one of the CSS-associated genes. METHODS: Clinical data was collected through an extensive web-based survey. RESULTS: We included 44 patients with a variant in a CSS-associated gene and a prenatal phenotype; 9 of these patients have been reported before. Prenatal anomalies that were frequently observed in our cohort include hydrocephalus, agenesis of the corpus callosum, hypoplastic left heart syndrome, persistent left vena cava, diaphragmatic hernia, renal agenesis, and intrauterine growth restriction. Anal anomalies were frequently identified after birth in patients with ARID1A variants (6/14, 43%). Interestingly, pathogenic ARID1A variants were much more frequently identified in the current prenatal cohort (16/44, 36%) than in postnatal CSS cohorts (5%-9%). CONCLUSION: Our data shed new light on the prenatal phenotype of patients with pathogenic variants in CSS genes.


Subject(s)
Hand Deformities, Congenital , Intellectual Disability , Micrognathism , Abnormalities, Multiple , Chromosomal Proteins, Non-Histone/genetics , Face/abnormalities , Genetic Association Studies , Hand Deformities, Congenital/genetics , Humans , Intellectual Disability/genetics , Intellectual Disability/pathology , Micrognathism/genetics , Neck/abnormalities , Phenotype
11.
J Autism Dev Disord ; 52(11): 4986-4993, 2022 Nov.
Article in English | MEDLINE | ID: mdl-34800228

ABSTRACT

Families of children with autism spectrum disorder (ASD) often utilize a variety of services. Relatively few studies have examined the relationship between family empowerment and service utilization for this population. The present study investigated the relationship between family empowerment and service utilization in families of children with ASD from the Pacific Northwest. Family empowerment did not predict the use of behavioral services or established related services. However, higher family empowerment was reported for families who reported use of complementary and alternative medicine. Implications for future research and clinical practice are discussed.


Subject(s)
Autism Spectrum Disorder , Complementary Therapies , Autism Spectrum Disorder/diagnosis , Autism Spectrum Disorder/epidemiology , Autism Spectrum Disorder/therapy , Child , Family , Humans
12.
Sci Adv ; 7(23)2021 06.
Article in English | MEDLINE | ID: mdl-34088660

ABSTRACT

Sleep disturbances in autism and neurodevelopmental disorders are common and adversely affect patient's quality of life, yet the underlying mechanisms are understudied. We found that individuals with mutations in CHD8, among the highest-confidence autism risk genes, or CHD7 suffer from disturbed sleep maintenance. These defects are recapitulated in Drosophila mutants affecting kismet, the sole CHD8/CHD7 ortholog. We show that Kismet is required in glia for early developmental and adult sleep architecture. This role localizes to subperineurial glia constituting the blood-brain barrier. We demonstrate that Kismet-related sleep disturbances are caused by high serotonin during development, paralleling a well-established but genetically unsolved autism endophenotype. Despite their developmental origin, Kismet's sleep architecture defects can be reversed in adulthood by a behavioral regime resembling human sleep restriction therapy. Our findings provide fundamental insights into glial regulation of sleep and propose a causal mechanistic link between the CHD8/CHD7/Kismet family, developmental hyperserotonemia, and autism-associated sleep disturbances.


Subject(s)
Autistic Disorder , DNA-Binding Proteins , Animals , Autistic Disorder/genetics , Blood-Brain Barrier/metabolism , DNA Helicases/metabolism , DNA-Binding Proteins/metabolism , Drosophila/metabolism , Neuroglia/metabolism , Quality of Life , Serotonin , Sleep , Transcription Factors/metabolism
13.
J Autism Dev Disord ; 51(9): 3365-3373, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33175317

ABSTRACT

Self-injurious behaviors (SIB) are elevated in autism spectrum disorder (ASD) and related genetic disorders, but the genetic and biological mechanisms that contribute to SIB in ASD are poorly understood. This study examined rates and predictors of SIB in 112 individuals with disruptive mutations to ASD-risk genes. Current SIB were reported in 30% of participants and associated with poorer cognitive and adaptive skills. History of severe abdominal pain predicted higher rates of SIB and SIB severity after controlling for age and adaptive behavior; individuals with a history of severe abdominal pain were eight times more likely to exhibit SIB than those with no history. Future research is needed to examine associations between genetic risk, pain, and SIB in this population.


Subject(s)
Autism Spectrum Disorder , Self-Injurious Behavior , Abdominal Pain/genetics , Autism Spectrum Disorder/epidemiology , Autism Spectrum Disorder/genetics , Humans , Mutation , Risk Factors , Self-Injurious Behavior/epidemiology , Self-Injurious Behavior/genetics
14.
Dev Psychopathol ; 32(4): 1353-1361, 2020 10.
Article in English | MEDLINE | ID: mdl-32912353

ABSTRACT

Autism spectrum disorder (ASD) is a common neurodevelopmental disorder characterized by deficits in social communication and presence of restricted, repetitive behaviors, and interests. However, individuals with ASD vary significantly in their challenges and abilities in these and other developmental domains. Gene discovery in ASD has accelerated in the past decade, and genetic subtyping has yielded preliminary evidence of utility in parsing phenotypic heterogeneity through genomic subtypes. Recent advances in transcriptomics have provided additional dimensions with which to refine genetic subtyping efforts. In the current study, we investigate phenotypic differences among transcriptional subtypes defined by neurobiological spatiotemporal co-expression patterns. Of the four transcriptional subtypes examined, participants with mutations to genes typically expressed highly in all brain regions prenatally, and those with differential postnatal cerebellar expression relative to other brain regions, showed lower cognitive and adaptive skills, higher severity of social communication deficits, and later acquisition of speech and motor milestones, compared to those with mutations to genes highly expressed during the postnatal period across brain regions. These findings suggest higher-order characterization of genetic subtypes based on neurobiological expression patterns may be a promising approach to parsing phenotypic heterogeneity among those with ASD and related neurodevelopmental disorders.


Subject(s)
Autism Spectrum Disorder , Autism Spectrum Disorder/genetics , Biological Variation, Population , Brain , Cerebellum , Humans
15.
Autism Res ; 13(10): 1659-1669, 2020 10.
Article in English | MEDLINE | ID: mdl-32918531

ABSTRACT

Approximately one-fourth of autism spectrum disorder (ASD) cases are associated with a disruptive genetic variant. Many of these ASD genotypes have been described previously, and are characterized by unique constellations of medical, psychiatric, developmental, and behavioral features. Development of precision medicine care for affected individuals has been challenging due to the phenotypic heterogeneity that exists even within each genetic subtype. In the present study, we identify developmental milestones that predict cognitive and adaptive outcomes for five of the most common ASD genotypes. Sixty-five youth with a known pathogenic variant involving ADNP, CHD8, DYRK1A, GRIN2B, or SCN2A genes participated in cognitive and adaptive testing. Exploratory linear regressions were used to identify developmental milestones that predicted cognitive and adaptive outcomes within each gene group. We hypothesized that the earliest and most predictive milestones would vary across gene groups, but would be consistent across outcomes within each genetic subtype. Within the ADNP group, age of walking predicted cognitive outcomes, while age of first words predicted adaptive behaviors. Age of phrases predicted adaptive functioning in the CHD8 group, but cognitive outcomes were not clearly associated with early developmental milestones. Verbal milestones were the strongest predictors of cognitive and adaptive outcomes for individuals with mutations to DYRK1A, GRIN2B, or SCN2A. These trends inform decisions about treatment planning and long-term expectations for affected individuals, and they add to the growing body of research linking molecular genetic function to brain development and phenotypic outcomes. LAY SUMMARY: Researchers have found many genetic causes of autism including mutations to ADNP, CHD8, DYRK1A, GRIN2B, and SCN2A genes. We found that each genetic cause had different early developmental milestones that explained the overall functioning of the children when they were older. Depending on the genetic cause, the age that a child first starts walking and/or talking may help to better understand and support a child's development who has a mutation to one of the above genes. Autism Res 2020, 13: 1659-1669. © 2020 International Society for Autism Research and Wiley Periodicals LLC.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Adolescent , Autism Spectrum Disorder/genetics , Child , Child, Preschool , Cognition , Female , Homeodomain Proteins , Humans , Infant , Male , Nerve Tissue Proteins
16.
Am J Hum Genet ; 107(3): 555-563, 2020 09 03.
Article in English | MEDLINE | ID: mdl-32758449

ABSTRACT

Helsmoortel-Van der Aa syndrome (HVDAS) is a neurodevelopmental condition associated with intellectual disability/developmental delay, autism spectrum disorder, and multiple medical comorbidities. HVDAS is caused by mutations in activity-dependent neuroprotective protein (ADNP). A recent study identified genome-wide DNA methylation changes in 22 individuals with HVDAS, adding to the group of neurodevelopmental disorders with an epigenetic signature. This methylation signature segregated those with HVDAS into two groups based on the location of the mutations. Here, we conducted an independent study on 24 individuals with HVDAS and replicated the existence of the two mutation-dependent episignatures. To probe whether the two distinct episignatures correlate with clinical outcomes, we used deep behavioral and neurobiological data from two prospective cohorts of individuals with a genetic diagnosis of HVDAS. We found limited phenotypic differences between the two HVDAS-affected groups and no evidence that individuals with more widespread methylation changes are more severely affected. Moreover, in spite of the methylation changes, we observed no profound alterations in the blood transcriptome of individuals with HVDAS. Our data warrant caution in harnessing methylation signatures in HVDAS as a tool for clinical stratification, at least with regard to behavioral phenotypes.


Subject(s)
Autism Spectrum Disorder/genetics , Homeodomain Proteins/genetics , Intellectual Disability/genetics , Nerve Tissue Proteins/genetics , Neurodevelopmental Disorders/genetics , Autism Spectrum Disorder/pathology , Child , DNA Methylation/genetics , Developmental Disabilities/genetics , Developmental Disabilities/pathology , Epigenesis, Genetic/genetics , Female , Humans , Intellectual Disability/pathology , Male , Mutation/genetics , Neurodevelopmental Disorders/pathology , Phenotype , Transcriptome/genetics
17.
Child Health Care ; 49(4): 361-384, 2020.
Article in English | MEDLINE | ID: mdl-33727758

ABSTRACT

Children with autism spectrum disorder (ASD) are at risk for co-occurring medical conditions, many of which have also been reported among individuals with mutations in ASD-associated genes. This study examined rates of co-occurring medical conditions across 301 individuals with disruptive mutations to 1 of 18 ASD-risk genes in comparison to rates of conditions in an idiopathic ASD sample. Rates of gastrointestinal problems, seizures, physical anomalies, and immune problems were generally elevated, with significant differences in rates observed between groups. Results may inform medical care of individuals with ASD-associated mutations and research into mechanisms of co-occurring medical conditions in ASD.

18.
J Learn Disabil ; 52(2): 168-180, 2019.
Article in English | MEDLINE | ID: mdl-30027807

ABSTRACT

Group size and treatment intensity are understudied topics in mathematics intervention research. This study examined whether the treatment intensity and overall intervention effects of an empirically validated Tier 2 mathematics intervention varied between intervention groups with 2:1 and 5:1 student-teacher ratios. Student practice opportunities and the quality of explicit instruction served as treatment intensity metrics. A total of 465 kindergarten students with mathematics difficulties from 136 intervention groups participated. Results suggested comparable performances between the 2:1 and 5:1 intervention groups on six outcome measures. Observation data indicated that student practice differed by group size. Students in the 5:1 groups received more opportunities to practice with their peers, while students in the 2:1 groups participated in more frequent and higher quality individualized practice opportunities. Implications in terms of delivering Tier 2 interventions in small-group formats and engaging at-risk learners in meaningful practice opportunities are discussed.


Subject(s)
Dyscalculia/rehabilitation , Early Intervention, Educational/methods , Outcome and Process Assessment, Health Care , Practice, Psychological , Child , Child, Preschool , Female , Humans , Male
19.
J Appl Behav Anal ; 48(2): 454-9, 2015.
Article in English | MEDLINE | ID: mdl-25962478

ABSTRACT

We replicated and extended the findings of Haq and Kodak (2015) by evaluating the efficiency of massed and distributed practice for teaching tacts and textual and intraverbal behavior to 3 children with autism. Massed practice included all practice opportunities conducted on 1 day during each week, and distributed practice included practice opportunities conducted across several days during the week. The results indicated that distributed practice was more efficient for all participants. Suggested areas for future research and implications for practice are discussed.


Subject(s)
Autistic Disorder/psychology , Behavior Therapy/methods , Practice, Psychological , Retention, Psychology , Child , Child, Preschool , Female , Humans , Male , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...