Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Alzheimers Dement ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958117

ABSTRACT

INTRODUCTION: Despite a two-fold risk, individuals of African ancestry have been underrepresented in Alzheimer's disease (AD) genomics efforts. METHODS: Genome-wide association studies (GWAS) of 2,903 AD cases and 6,265 controls of African ancestry. Within-dataset results were meta-analyzed, followed by functional genomics analyses. RESULTS: A novel AD-risk locus was identified in MPDZ on chromosome (chr) 9p23 (rs141610415, MAF = 0.002, P = 3.68×10-9). Two additional novel common and nine rare loci were identified with suggestive associations (P < 9×10-7). Comparison of association and linkage disequilibrium (LD) patterns between datasets with higher and lower degrees of African ancestry showed differential association patterns at chr12q23.2 (ASCL1), suggesting that this association is modulated by regional origin of local African ancestry. DISCUSSION: These analyses identified novel AD-associated loci in individuals of African ancestry and suggest that degree of African ancestry modulates some associations. Increased sample sets covering as much African genetic diversity as possible will be critical to identify additional loci and deconvolute local genetic ancestry effects. HIGHLIGHTS: Genetic ancestry significantly impacts risk of Alzheimer's Disease (AD). Although individuals of African ancestry are twice as likely to develop AD, they are vastly underrepresented in AD genomics studies. The Alzheimer's Disease Genetics Consortium has previously identified 16 common and rare genetic loci associated with AD in African American individuals. The current analyses significantly expand this effort by increasing the sample size and extending ancestral diversity by including populations from continental Africa. Single variant meta-analysis identified a novel genome-wide significant AD-risk locus in individuals of African ancestry at the MPDZ gene, and 11 additional novel loci with suggestive genome-wide significance at P < 9×10-7. Comparison of African American datasets with samples of higher degree of African ancestry demonstrated differing patterns of association and linkage disequilibrium at one of these loci, suggesting that degree and/or geographic origin of African ancestry modulates the effect at this locus. These findings illustrate the importance of increasing number and ancestral diversity of African ancestry samples in AD genomics studies to fully disentangle the genetic architecture underlying AD, and yield more effective ancestry-informed genetic screening tools and therapeutic interventions.

2.
medRxiv ; 2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37693582

ABSTRACT

INTRODUCTION: Despite a two-fold increased risk, individuals of African ancestry have been significantly underrepresented in Alzheimer's Disease (AD) genomics efforts. METHODS: GWAS of 2,903 AD cases and 6,265 cognitive controls of African ancestry. Within-dataset results were meta-analyzed, followed by gene-based and pathway analyses, and analysis of RNAseq and whole-genome sequencing data. RESULTS: A novel AD risk locus was identified in MPDZ on chromosome 9p23 (rs141610415, MAF=.002, P =3.68×10 -9 ). Two additional novel common and nine novel rare loci approached genome-wide significance at P <9×10 -7 . Comparison of association and LD patterns between datasets with higher and lower degrees of African ancestry showed differential association patterns at chr12q23.2 ( ASCL1 ), suggesting that the association is modulated by regional origin of local African ancestry. DISCUSSION: Increased sample sizes and sample sets from Africa covering as much African genetic diversity as possible will be critical to identify additional disease-associated loci and improve deconvolution of local genetic ancestry effects.

3.
Cancers (Basel) ; 15(16)2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37627195

ABSTRACT

Identifying cancer type-specific genes that define cell states is important to develop effective therapies for patients and methods for detection, early diagnosis, and prevention. While molecular mechanisms that drive malignancy have been identified for various cancers, the identification of cell-type defining transcription factors (TFs) that distinguish normal cells from cancer cells has not been fully elucidated. Here, we utilized a network biology framework, which assesses the fidelity of cell fate conversions, to identify cancer type-specific gene regulatory networks (GRN) for 17 types of cancer. Through an integrative analysis of a compendium of expression data, we elucidated core TFs and GRNs for multiple cancer types. Moreover, by comparing normal tissues and cells to cancer type-specific GRNs, we found that the expression of key network-influencing TFs can be utilized as a survival prognostic indicator for a diverse cohort of cancer patients. These findings offer a valuable resource for exploring cancer type-specific networks across a broad range of cancer types.

4.
Oncogene ; 41(21): 2958-2972, 2022 05.
Article in English | MEDLINE | ID: mdl-35440714

ABSTRACT

The H3K4 demethylase KDM5B is overexpressed in multiple cancer types, and elevated expression levels of KDM5B is associated with decreased survival. However, the underlying mechanistic contribution of dysregulated expression of KDM5B and H3K4 demethylation in cancer is poorly understood. Our results show that loss of KDM5B in multiple types of cancer cells leads to increased proliferation and elevated expression of cancer stem cell markers. In addition, we observed enhanced tumor formation following KDM5B depletion in a subset of representative cancer cell lines. Our findings also support a role for KDM5B in regulating epigenetic plasticity, where loss of KDM5B in cancer cells with elevated KDM5B expression leads to alterations in activity of chromatin states, which facilitate activation or repression of alternative transcriptional programs. In addition, we define KDM5B-centric epigenetic and transcriptional patterns that support cancer cell plasticity, where KDM5B depleted cancer cells exhibit altered epigenetic and transcriptional profiles resembling a more primitive cellular state. This study also provides a resource for evaluating associations between alterations in epigenetic patterning upon depletion of KDM5B and gene expression in a diverse set of cancer cells.


Subject(s)
Jumonji Domain-Containing Histone Demethylases , Neoplasms , Cell Line, Tumor , Epigenesis, Genetic , Epigenomics , Humans , Jumonji Domain-Containing Histone Demethylases/genetics , Jumonji Domain-Containing Histone Demethylases/metabolism , Neoplasms/pathology , Nuclear Proteins/genetics , Repressor Proteins/genetics
5.
Curr Neurol Neurosci Rep ; 21(2): 4, 2021 01 19.
Article in English | MEDLINE | ID: mdl-33464407

ABSTRACT

PURPOSE OF REVIEW: Early-onset Alzheimer's disease (EOAD), defined as Alzheimer's disease (AD) occurring before age 65, is significantly less well studied than the late-onset form (LOAD) despite EOAD often presenting with a more aggressive disease progression. The aim of this review is to summarize the current understanding of the etiology of EOAD, their translation into clinical practice, and to suggest steps to be taken to move our understanding forward. RECENT FINDINGS: EOAD cases make up 5-10% of AD cases but only 10-15% of these cases show known mutations in the APP, PSEN1, and PSEN2, which are linked to EOAD. New data suggests that these unexplained cases following a non-Mendelian pattern of inheritance is potentially caused by a mix of common and newly discovered rare variants. However, only a fraction of this genetic variation has been identified to date leaving the molecular mechanisms underlying this type of AD and their association with clinical, biomarker, and neuropathological changes unclear. While great advancements have been made in characterizing EOAD, much work is needed to disentangle the molecular mechanisms underlying this type of AD and to identify putative targets for more precise disease screening, diagnosis, prevention, and treatment.


Subject(s)
Alzheimer Disease , Age of Onset , Aged , Alzheimer Disease/diagnosis , Alzheimer Disease/epidemiology , Alzheimer Disease/genetics , Amyloid beta-Protein Precursor/genetics , Humans , Mutation , Presenilin-1/genetics , Presenilin-2/genetics
6.
Development ; 147(23)2020 12 04.
Article in English | MEDLINE | ID: mdl-33144397

ABSTRACT

Heterochromatin, a densely packed chromatin state that is transcriptionally silent, is a critical regulator of gene expression. However, it is unclear how the repressive histone modification H4K20me3 or the histone methyltransferase SUV420H2 regulates embryonic stem (ES) cell fate by patterning the epigenetic landscape. Here, we report that depletion of SUV420H2 leads to a near-complete loss of H4K20me3 genome wide, dysregulated gene expression and delayed ES cell differentiation. SUV420H2-bound regions are enriched with repetitive DNA elements, which are de-repressed in SUV420H2 knockout ES cells. Moreover, SUV420H2 regulation of H4K20me3-marked heterochromatin controls chromatin architecture, including fine-scale chromatin interactions in pluripotent ES cells. Our results indicate that SUV420H2 plays a crucial role in stabilizing the three-dimensional chromatin landscape of ES cells, as loss of SUV420H2 resulted in A/B compartment switching, perturbed chromatin insulation, and altered chromatin interactions of pericentric heterochromatin and surrounding regions, indicative of localized decondensation. In addition, depletion of SUV420H2 resulted in compromised interactions between H4K20me3 and gene-regulatory regions. Together, these findings describe a new role for SUV420H2 in regulating the chromatin landscape of ES cells.


Subject(s)
Chromatin/genetics , Heterochromatin/genetics , Histone-Lysine N-Methyltransferase/genetics , Animals , Cell Differentiation/genetics , Cell Line, Tumor , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Epigenesis, Genetic/genetics , Gene Expression Regulation, Developmental/genetics , Gene Knockout Techniques , Histones/genetics , Humans , Methylation , Mice , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Protein Interaction Maps/genetics , Transcription, Genetic/genetics
7.
Epigenetics Chromatin ; 12(1): 20, 2019 Apr 02.
Article in English | MEDLINE | ID: mdl-30940185

ABSTRACT

BACKGROUND: Positioning of nucleosomes along DNA is an integral regulator of chromatin accessibility and gene expression in diverse cell types. However, the precise nature of how histone demethylases including the histone 3 lysine 4 (H3K4) demethylase, KDM5B, impacts nucleosome positioning around transcriptional start sites (TSS) of active genes is poorly understood. RESULTS: Here, we report that KDM5B is a critical regulator of nucleosome positioning in embryonic stem (ES) cells. Micrococcal nuclease sequencing (MNase-Seq) revealed increased enrichment of nucleosomes around TSS regions and DNase I hypersensitive sites in KDM5B-depleted ES cells. Moreover, depletion of KDM5B resulted in a widespread redistribution and disorganization of nucleosomes in a sequence-dependent manner. Dysregulated nucleosome phasing was also evident in KDM5B-depleted ES cells, including asynchronous nucleosome spacing surrounding TSS regions, where nucleosome variance was positively correlated with the degree of asynchronous phasing. The redistribution of nucleosomes around TSS regions in KDM5B-depleted ES cells is correlated with dysregulated gene expression, and altered H3K4me3 and RNA polymerase II occupancy. In addition, we found that DNA shape features varied significantly at regions with shifted nucleosomes. CONCLUSION: Altogether, our data support a role for KDM5B in regulating nucleosome positioning in ES cells.


Subject(s)
DNA-Binding Proteins/metabolism , Jumonji Domain-Containing Histone Demethylases/metabolism , Mouse Embryonic Stem Cells/metabolism , Nucleosomes/genetics , Animals , Cell Line , DNA-Binding Proteins/genetics , Epigenesis, Genetic , Jumonji Domain-Containing Histone Demethylases/genetics , Mice , Nucleosomes/chemistry
8.
J Biol Chem ; 293(39): 15120-15135, 2018 09 28.
Article in English | MEDLINE | ID: mdl-30115682

ABSTRACT

RNA has been shown to interact with various proteins to regulate chromatin dynamics and gene expression. However, it is unknown whether RNAs associate with epigenetic marks such as post-translational modifications of histones, including histone 4 lysine 20 trimethylation (H4K20me3) or trimethylated histone 3 lysine 4 (H3K4me3), to regulate chromatin and gene expression. Here, we used chromatin-associated RNA immunoprecipitation (CARIP) followed by next-generation sequencing (CARIP-Seq) to survey RNAs associated with H4K20me3- and H3K4me3-marked chromatin on a global scale in embryonic stem (ES) cells. We identified thousands of mRNAs and noncoding RNAs that associate with H4K20me3- and H3K4me3-marked chromatin. H4K20me3- and H3K4me3-interacting RNAs are involved in chromatin organization and modification and RNA processing, whereas H4K20me3-only RNAs are involved in cell motility and differentiation, and H3K4me3-only RNAs are involved in metabolic processes and RNA processing. Expression of H3K4me3-associated RNAs is enriched in ES cells, whereas expression of H4K20me3-associated RNAs is enriched in ES cells and differentiated cells. H4K20me3- and H3K4me3-interacting RNAs originate from genes that co-localize with features of active chromatin, including transcriptional machinery and active promoter regions, and the histone modification H3K36me3 in gene body regions. We also found that H4K20me3 and H3K4me3 are associated with distinct gene features including transcripts of greater length and exon number relative to unoccupied transcripts. H4K20me3- and H3K4me3-marked chromatin is also associated with processed RNAs (exon transcripts) relative to unspliced pre-mRNA and ncRNA transcripts. In summary, our results provide evidence that H4K20me3- and H3K4me3-associated RNAs represent a distinct subnetwork of the ES cell transcriptional repertoire.


Subject(s)
Embryonic Stem Cells/metabolism , Epigenesis, Genetic/genetics , Histone Code/genetics , Transcription, Genetic , Animals , Chromatin/genetics , Chromatin/metabolism , Histone-Lysine N-Methyltransferase/chemistry , Histone-Lysine N-Methyltransferase/genetics , Histones/chemistry , Histones/genetics , Methylation , Mice , RNA, Messenger/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...