Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Biochem ; 175(2): 141-146, 2024 Feb 25.
Article in English | MEDLINE | ID: mdl-37948628

ABSTRACT

Cellular zoning or partitioning is critical in preventing macromolecules from random diffusion and orchestrating the spatiotemporal dynamics of biochemical reactions. Along with membranous organelles, membraneless organelles contribute to the precise regulation of biochemical reactions inside cells. In response to environmental cues, membraneless organelles rapidly form through liquid-liquid phase separation, sequester certain proteins and RNAs, mediate specific reactions and dissociate. Among membraneless organelles, ubiquitin-positive condensates, namely, p62 bodies, maintain cellular homeostasis through selective autophagy of themselves to contribute to intracellular quality control. p62 bodies also activate the anti-oxidative stress response regulated by the KEAP1-NRF2 system. In this review, we present an overview of recent advancements in cellular and molecular biology related to p62 bodies, highlighting their dynamic nature and functions.


Subject(s)
Intracellular Signaling Peptides and Proteins , Signal Transduction , Kelch-Like ECH-Associated Protein 1/metabolism , Signal Transduction/physiology , Intracellular Signaling Peptides and Proteins/metabolism , Phase Separation , Autophagy/physiology , NF-E2-Related Factor 2/metabolism
2.
Autophagy ; 20(2): 441-442, 2024 02.
Article in English | MEDLINE | ID: mdl-37815214

ABSTRACT

SQSTM1/p62 bodies are phase-separated condensates that play a fundamental role in intracellular quality control and stress responses. Despite extensive studies investigating the mechanism of formation and degradation of SQSTM1/p62 bodies, the constituents of SQSTM1/p62 bodies remain elusive. We recently developed a purification method for intracellular SQSTM1/p62 bodies using a cell sorter and identified their constituents by mass spectrometry. Combined with mass spectrometry of tissues from selective autophagy-deficient mice, we identified vault, a ubiquitous non-membranous organelle composed of proteins and non-coding RNA, as a novel substrate for selective autophagy. Vault directly binds to NBR1, an SQSTM1/p62 binding partner recruited to SQSTM1/p62 bodies, and is subsequently degraded by selective autophagy dependent on the phase separation of SQSTM1/p62. We named this process "vault-phagy" and found that defects in vault-phagy are related to nonalcoholic steatohepatitis (NASH)-derived hepatocellular carcinoma. Our method for purifying SQSTM1/p62 bodies will contribute to elucidating the mechanisms of several stress responses and diseases mediated by SQSTM1/p62 bodies.


Subject(s)
Adaptor Proteins, Signal Transducing , Liver Neoplasms , Animals , Mice , Adaptor Proteins, Signal Transducing/metabolism , Sequestosome-1 Protein/metabolism , Autophagy , Organelles/metabolism
3.
Dev Cell ; 58(13): 1189-1205.e11, 2023 07 10.
Article in English | MEDLINE | ID: mdl-37192622

ABSTRACT

In addition to membranous organelles, autophagy selectively degrades biomolecular condensates, in particular p62/SQSTM1 bodies, to prevent diseases including cancer. Evidence is growing regarding the mechanisms by which autophagy degrades p62 bodies, but little is known about their constituents. Here, we established a fluorescence-activated-particle-sorting-based purification method for p62 bodies using human cell lines and determined their constituents by mass spectrometry. Combined with mass spectrometry of selective-autophagy-defective mouse tissues, we identified vault, a large supramolecular complex, as a cargo within p62 bodies. Mechanistically, major vault protein directly interacts with NBR1, a p62-interacting protein, to recruit vault into p62 bodies for efficient degradation. This process, named vault-phagy, regulates homeostatic vault levels in vivo, and its impairment may be associated with non-alcoholic-steatohepatitis-derived hepatocellular carcinoma. Our study provides an approach to identifying phase-separation-mediated selective autophagy cargoes, expanding our understanding of the role of phase separation in proteostasis.


Subject(s)
Liver Neoplasms , Proteomics , Animals , Humans , Mice , Sequestosome-1 Protein/metabolism , Autophagy , Organelles/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...