Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Front Pediatr ; 12: 1389650, 2024.
Article in English | MEDLINE | ID: mdl-38720948

ABSTRACT

Staphylococcus aureus (S. aureus) is a significant human pathogen, in particular in patients with an underlying medical condition. It is equipped with a large variety of virulence factors enabling both colonization and invasive disease. The spectrum of manifestation is broad, ranging from superficial skin infections to life-threatening conditions like pneumonia and sepsis. As a major cause of healthcare-associated infections, there is a great need in understanding staphylococcal immunity and defense mechanisms. Patients with inborn errors of immunity (IEI) frequently present with pathological infection susceptibility, however, not all of them are prone to S. aureus infection. Thus, enhanced frequency or severity of S. aureus infections can serve as a clinical indicator of a specific underlying immunological impairment. In addition, the analysis of immunological functions in patients with susceptibility to S. aureus provides a unique opportunity of understanding the complex interplay between staphylococcal virulence and host immune predisposition. While the importance of quantitatively and qualitatively normal neutrophils is widely known, less awareness exists about the role of specific cytokines such as functional interleukin (IL)-6 signaling. This review categorizes well-known IEI in light of their susceptibility to S. aureus and discusses the relevant associated pathomechanisms. Understanding host-pathogen-interactions in S. aureus infections in susceptible individuals can pave the way for more effective management and preventive treatment options. Moreover, these insights might help to identify patients who should be screened for an underlying IEI. Ultimately, enhanced understanding of pathogenesis and immune responses in S. aureus infections may also be of relevance for the general population.

2.
Angew Chem Int Ed Engl ; 61(15): e202117570, 2022 04 04.
Article in English | MEDLINE | ID: mdl-35129881

ABSTRACT

Responsive fluorescent materials offer a high potential for sensing and (bio-)imaging applications. To investigate new concepts for such materials and to broaden their applicability, the previously reported non-fluorescent zinc(II) complex [Zn(L)] that shows coordination-induced turn-on emission was encapsulated into a family of non-fluorescent polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP) diblock copolymer micelles leading to brightly emissive materials. Coordination-induced turn-on emission upon incorporation and ligation of the [Zn(L)] in the P4VP core outperform parent [Zn(L)] in pyridine solution with respect to lifetimes, quantum yields, and temperature resistance. The quantum yield can be easily tuned by tailoring the selectivity of the employed solvent or solvent mixture and, thus, the tendency of the PS-b-P4VP diblock copolymers to self-assemble into micelles. A medium-dependent off-on sensor upon micelle formation could be established by suppression of non-micelle-borne emission background pertinent to chloroform through controlled acidification indicating an additional pH-dependent process.


Subject(s)
Micelles , Polymers , Solvents
3.
Phys Chem Chem Phys ; 24(2): 883-894, 2022 Jan 04.
Article in English | MEDLINE | ID: mdl-34908055

ABSTRACT

From X-ray absorption spectroscopy (XAS) and X-ray photoemission spectroscopy (XPS), it is evident that the spin state transition behavior of Fe(II) spin crossover coordination polymer crystallites at the surface differs from the bulk. A comparison of four different coordination polymers reveals that the observed surface properties may differ from bulk for a variety of reasons. There are Fe(II) spin crossover coordination polymers with either almost complete switching of the spin state at the surface or no switching at all. Oxidation, differences in surface packing, and changes in coordination could all contribute to making the surface very different from the bulk. Some Fe(II) spin crossover coordination polymers may be sufficiently photoactive so that X-ray spectroscopies cannot discern the spin state transition.

4.
Nutrients ; 13(11)2021 Nov 11.
Article in English | MEDLINE | ID: mdl-34836285

ABSTRACT

Given the undesirable side effects of commercially used mouth rinses that include chemically synthesized antimicrobial compounds such as chlorhexidine, it is essential to discover novel antimicrobial substances based on plant extracts. The aim of this study was to examine the antimicrobial effect of Inula viscosa extract on the initial microbial adhesion in the oral cavity. Individual test splints were manufactured for the participants, on which disinfected bovine enamel samples were attached. After the initial microbial adhesion, the biofilm-covered oral samples were removed and treated with different concentrations (10, 20, and 30 mg/mL) of an I. viscosa extract for 10 min. Positive and negative controls were also sampled. Regarding the microbiological parameters, the colony-forming units (CFU) and vitality testing (live/dead staining) were examined in combination with fluorescence microscopy. An I. viscosa extract with a concentration of 30 mg/mL killed the bacteria of the initial adhesion at a rate of 99.99% (log10 CFU value of 1.837 ± 1.54). Compared to the negative control, no killing effects were determined after treatment with I. viscosa extract at concentrations of 10 mg/mL (log10 CFU value 3.776 ± 0.831; median 3.776) and 20 mg/mL (log10 CFU value 3.725 ± 0.300; median 3.711). The live/dead staining revealed a significant reduction (p < 0.0001) of vital adherent bacteria after treatment with 10 mg/mL of I. viscosa extract. After treatment with an I. viscosa extract with a concentration of 30 mg/mL, no vital bacteria could be detected. For the first time, significant antimicrobial effects on the initial microbial adhesion in in situ oral biofilms were reported for an I. viscosa extract.


Subject(s)
Anti-Infective Agents/pharmacology , Biofilms/drug effects , Inula/chemistry , Plant Extracts/pharmacology , Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Bacterial Adhesion/drug effects , Colony Count, Microbial , Microbial Viability/drug effects , Microscopy, Fluorescence , Mouth/microbiology , Mouthwashes
5.
Chemistry ; 27(61): 15158-15170, 2021 Nov 02.
Article in English | MEDLINE | ID: mdl-34431572

ABSTRACT

Three new zinc(II) coordination units [Zn(1-3)] based on planar-directing tetradentate Schiff base-like ligands H2 (1-3) were synthesized. Their solid-state structures were investigated by single crystal X-ray diffraction, showing the tendency to overcome the square-planar coordination sphere by axial ligation. Affinity in solution towards axial ligation has been tested by extended spectroscopic studies, both in the absorption and emission mode. The electronic spectrum of the pyridine complex [Zn(1)(py)] has been characterized by MC-PDFT to validate the results of extended TD-DFT studies. Green emission of non-emissive solutions of [Zn(1-3)] in chloroform could be switched on in the presence of potent Lewis-bases. While interpretation in terms of an equilibrium of stacked/non-fluorescent and destacked/fluorescent species is in line with precedents from literature, the sensitivity of [Zn(1-3)] was greatly reduced. Results of a computation-based structure search allow to trace the hidden Lewis acidity of [Zn(1-3)] to a new stacking motif, resulting in a strongly enhanced stability of the dimers.


Subject(s)
Coordination Complexes , Zinc , Crystallography, X-Ray , Lewis Acids , Ligands , Schiff Bases
6.
Chemistry ; 27(68): 16990-17001, 2021 Dec 06.
Article in English | MEDLINE | ID: mdl-34227717

ABSTRACT

Phase-pure spinel-type magnetic nickel ferrite (NiFe2 O4 ) nanocrystals in the size range of 4 to 11 nm were successfully synthesized by a fast and energy-saving microwave-assisted approach. Size and accessible surface areas can be tuned precisely by the reaction parameters. Our results highlight the correlation between size, degree of inversion, and magnetic characteristics of NiFe2 O4 nanoparticles, which enables fine-tuning of these parameters for a particular application without changing the elemental composition. Moreover, the application potential of the synthesized powders for the electrocatalytic oxygen evolution reaction in alkaline media was demonstrated, showing that a low degree of inversion is beneficial for the overall performance. The most active sample reaches an overpotential of 380 mV for water oxidation at 10 mA cm-2 and 38.8 mA cm-2 at 1.7 V vs. RHE, combined with a low Tafel slope of 63 mV dec-1 .

7.
ACS Appl Mater Interfaces ; 13(7): 8745-8753, 2021 Feb 24.
Article in English | MEDLINE | ID: mdl-33560117

ABSTRACT

Ceramic fibers are high-tech structural key components of ceramic matrix composites (CMCs), which are a very promising class of materials for applications in next-generation turbines, especially nonoxide ceramic fibers, usually produced by the polymer-derived ceramics (PDC) route, which possess the enhanced mechanical and thermostructural properties necessary to withstand the harsh conditions (temperature and atmosphere) imposed on CMCs. However, recycling composite materials, such as fiber-reinforced polymers and CMCs, is still a big challenge. Here, we present for the first time the processing of superparamagnetic iron-containing ceramic fibers, which, due to their magnetic properties, can be separated from the matrix material of a composite. The synthesis strategy of the novel functional ceramic fibers is based on a tailored reaction of polyorganosilazane with an iron complex, resulting in a suitable, meltable polymer. After melt-spinning and curing, subsequent pyrolysis leads to superparamagnetic ceramic fibers with a saturation magnetization of 1.54 emu g-1 because of in situ-formed iron silicide nanoparticles of an average size of 7.5 nm, homogeneously dispersed in an amorphous SiCNO matrix. Moreover, the ceramic fibers exhibit a tensile strength of 1.24 GPa and appropriate oxidation resistance. The developed versatile reaction strategy allows also for the incorporation of other elements to implement further functionalities for processing of multifunctional composites.

8.
J Am Chem Soc ; 143(9): 3466-3480, 2021 03 10.
Article in English | MEDLINE | ID: mdl-33636077

ABSTRACT

The response of the spin state to in situ variation of the coordination number (CISSS) is a promising and viable approach to smart sensor materials, yet it suffers to date from insensitive detection. Herein, we present the synthetic access to a family of planar nickel(II) complexes, whose CISSS is sensitively followed by means of fluorescence detection. For this purpose, nickel(II) complexes with four phenazine-based Schiff base-like ligands were synthesized and characterized through solution-phase spectroscopy (NMR and UV-vis), solid-state structure analysis (single-crystal XRD), and extended theoretical modeling. All of them reveal CISSS in solution through axial ligating a range of N- and O-donors. CISSS correlates nicely with the basicity of the axial ligand and the substitution-dependent acidity of the nickel(II) coordination site. Remarkably, three out of the four nickel(II) complexes are fluorescent in noncoordinating solvents but are fluorescence-silent in the presence of axial ligands such as pyridine. As these complexes are rare examples of fluorescent nickel(II) complexes, the photophysical properties with a coordination number of 4 were studied in detail, including temperature-dependent lifetime and quantum yield determinations. Most importantly, fluorescence quenching upon adding axial ligands allows a "black or white", i.e. digital, sensoring of spin state alternation. Our studies of fluorescence-detected CISSS (FD-CISSS) revealed that absorption-based CISSS and FD-CISSS are super proportional with respect to the pyridine concentration: FD-CISSS features a higher sensitivity. Overall, our findings indicate a favored ligation of these nickel(II) complexes in the excited state in comparison to the ground state.

9.
J Am Chem Soc ; 140(2): 700-709, 2018 01 17.
Article in English | MEDLINE | ID: mdl-29251919

ABSTRACT

A spin-crossover coordination polymer [Fe(L1)(bipy)]n (where L = a N2O22- coordinating Schiff base-like ligand bearing a phenazine fluorophore and bipy = 4,4'-bipyridine) was synthesized and exhibits a 48 K wide thermal hysteresis above room temperature (T1/2↑ = 371 K and T1/2↓ = 323 K) that is stable for several cycles. The spin transition was characterized using magnetic measurements, Mössbauer spectroscopy, and DSC measurements. T-dependent X-ray powder diffraction reveals a structural phase transition coupled with the spin transition phenomenon. The dimeric excerpt {(µ-bipy)[FeL1(MeOH)]2}·2MeOH of the coordination polymer chain crystallizes in the triclinic space group P1̅ and reveals that the packing of the molecules in the crystal is dominated by hydrogen bonds. Investigation of the emission properties of the complexes with regard to temperature shows that the spin crossover can be tracked by monitoring the emission spectra, since the emission color changes from greenish to a yellow color upon the low spin-to-high spin transition.

10.
Chemistry ; 24(20): 5100-5111, 2018 Apr 06.
Article in English | MEDLINE | ID: mdl-29143988

ABSTRACT

Two phenanthroline-derived Schiff base-like ligands with a covalently linked ruthenium(II) phosphorescent unit were synthesised and converted into bimetallic RuII -NiII complexes. The optical properties were studied to examine a possible photoluminescence quenching through a nonradiative energy-transfer upon a coordination-induced spin-state switch (CISSS) at the nickel(II) centre. Therefore, the metalloligands and the nickel(II) complexes were studied using UV/Vis absorbance, steady-state, and time-resolved emission spectroscopy in solutions of MeCN and pyridine. It is demonstrated that the nature of the bridging ligand between the ruthenium(II) donor and the nickel(II) acceptor strongly influences the photophysical behaviour upon CISSS. For the complex with a phenazine bridge, photoluminescence quenching is observed in the presence of a paramagnetic nickel(II) centre.


Subject(s)
Coordination Complexes/chemical synthesis , Luminescent Agents/chemical synthesis , Nickel/chemistry , Phenanthrolines/chemistry , Ruthenium/chemistry , Schiff Bases/chemistry , Acetonitriles/chemistry , Energy Transfer , Ligands , Molecular Structure , Pyridines/chemistry , Solvents/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...