Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 9(4): e15137, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37041935

ABSTRACT

The coronavirus disease (COVID-19) has continued to cause severe challenges during this unprecedented time, affecting every part of daily life in terms of health, economics, and social development. There is an increasing demand for chest X-ray (CXR) scans, as pneumonia is the primary and vital complication of COVID-19. CXR is widely used as a screening tool for lung-related diseases due to its simple and relatively inexpensive application. However, these scans require expert radiologists to interpret the results for clinical decisions, i.e., diagnosis, treatment, and prognosis. The digitalization of various sectors, including healthcare, has accelerated during the pandemic, with the use and importance of Artificial Intelligence (AI) dramatically increasing. This paper proposes a model using an Explainable Artificial Intelligence (XAI) technique to detect and interpret COVID-19 positive CXR images. We further analyze the impact of COVID-19 positive CXR images using heatmaps. The proposed model leverages transfer learning and data augmentation techniques for faster and more adequate model training. Lung segmentation is applied to enhance the model performance further. We conducted a pre-trained network comparison with the highest classification performance (F1-Score: 98%) using the ResNet model.

2.
Sci Rep ; 13(1): 128, 2023 01 04.
Article in English | MEDLINE | ID: mdl-36599960

ABSTRACT

The tubule index is a vital prognostic measure in breast cancer tumor grading and is visually evaluated by pathologists. In this paper, a computer-aided patch-based deep learning tubule segmentation framework, named Tubule-U-Net, is developed and proposed to segment tubules in Whole Slide Images (WSI) of breast cancer. Moreover, this paper presents a new tubule segmentation dataset consisting of 30820 polygonal annotated tubules in 8225 patches. The Tubule-U-Net framework first uses a patch enhancement technique such as reflection or mirror padding and then employs an asymmetric encoder-decoder semantic segmentation model. The encoder is developed in the model by various deep learning architectures such as EfficientNetB3, ResNet34, and DenseNet161, whereas the decoder is similar to U-Net. Thus, three different models are obtained, which are EfficientNetB3-U-Net, ResNet34-U-Net, and DenseNet161-U-Net. The proposed framework with three different models, U-Net, U-Net++, and Trans-U-Net segmentation methods are trained on the created dataset and tested on five different WSIs. The experimental results demonstrate that the proposed framework with the EfficientNetB3 model trained on patches obtained using the reflection padding and tested on patches with overlapping provides the best segmentation results on the test data and achieves 95.33%, 93.74%, and 90.02%, dice, recall, and specificity scores, respectively.


Subject(s)
Breast Neoplasms , Deep Learning , Humans , Female , Breast Neoplasms/diagnostic imaging , Image Processing, Computer-Assisted/methods , Semantics
3.
Sensors (Basel) ; 22(22)2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36433542

ABSTRACT

Wireless Sensor Networks (WSNs) have been around for over a decade and have been used in many important applications. Energy and reliability are two of the major problems with these kinds of applications. Reliable data delivery is an important issue in WSNs because it is a key part of how well data are sent. At the same time, energy consumption in battery-based sensors is another challenge. Therefore, efficient clustering and routing are techniques that can be used to save sensors energy and guarantee reliable message delivery. With this in mind, this paper develops an energy-efficient and reliable clustering protocol (ERCP) for WSNs. First, an efficient clustering technique is proposed for sensor nodes' energy savings considering different clustering parameters, including the link quality metric, the energy, the distance to neighbors, the distance to the sink node, and the cluster load metric. The proposed routing protocol works based on the concept of a reliable inter-cluster routing technique that saves energy. The routing decisions are made based on different parameters, such as the energy balance metric, the distance to the sink node, and the wireless link quality. Many experiments and analyses are examined to determine how well the ERCP performs. The experiment results showed that the ECRP protocol performs much better than some of the recent algorithms in both homogeneous and heterogeneous networks.

4.
Comput Intell Neurosci ; 2022: 8904768, 2022.
Article in English | MEDLINE | ID: mdl-36262621

ABSTRACT

Breast cancer is one of the most common invading cancers in women. Analyzing breast cancer is nontrivial and may lead to disagreements among experts. Although deep learning methods achieved an excellent performance in classification tasks including breast cancer histopathological images, the existing state-of-the-art methods are computationally expensive and may overfit due to extracting features from in-distribution images. In this paper, our contribution is mainly twofold. First, we perform a short survey on deep-learning-based models for classifying histopathological images to investigate the most popular and optimized training-testing ratios. Our findings reveal that the most popular training-testing ratio for histopathological image classification is 70%: 30%, whereas the best performance (e.g., accuracy) is achieved by using the training-testing ratio of 80%: 20% on an identical dataset. Second, we propose a method named DenTnet to classify breast cancer histopathological images chiefly. DenTnet utilizes the principle of transfer learning to solve the problem of extracting features from the same distribution using DenseNet as a backbone model. The proposed DenTnet method is shown to be superior in comparison to a number of leading deep learning methods in terms of detection accuracy (up to 99.28% on BreaKHis dataset deeming training-testing ratio of 80%: 20%) with good generalization ability and computational speed. The limitation of existing methods including the requirement of high computation and utilization of the same feature distribution is mitigated by dint of the DenTnet.


Subject(s)
Breast Neoplasms , Female , Humans , Breast Neoplasms/diagnostic imaging , Neural Networks, Computer , Machine Learning
SELECTION OF CITATIONS
SEARCH DETAIL