Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Metabolomics ; 17(12): 106, 2021 12 02.
Article in English | MEDLINE | ID: mdl-34855010

ABSTRACT

INTRODUCTION: The precise pharmacological action of inchinkoto (ICKT, Yin-Chen-Hao-Tang in Chinese), a hepatoprotective herbal medicine, on total metabolic pathways has not been well investigated. OBJECTIVES: The aim of this study was to explore the serum metabolites reflecting the pharmacological activity of ICKT, and mechanism of action of ICKT using serum metabolome analysis. METHODS: 54 patients with obstructive jaundice due to malignancies were included in this study. ICKT was administered for 3 days. Serum and bile samples were collected before and 1 h after ICKT administration on days 1 and 4. Serum metabolome analysis including ICKT components were performed. RESULTS: The levels of total/direct bilirubin, C-reactive protein, γ-glutamyl transpeptidase, and albumin in the serum were significantly improved after ICKT administration. In the serum metabolome analysis, inosine was the only elevated metabolite on days 1 and 4. Most of the metabolites which were significantly changed after ICKT administration were lipid mediators, and all decreased on day 1. Notably, the levels of many lipid mediators were increased on day 4. The difference in serum aspartic acid 1 h after ICKT administration was significantly correlated with a decrease in the levels of total bilirubin in the serum on day 4. CONCLUSIONS: Using metabolome analysis, we demonstrated several metabolic changes that may be associated with the pharmacological mechanisms of ICKT. The biological implications of these metabolites should be further investigated in basic research studies.


Subject(s)
Herbal Medicine , Plants, Medicinal , Humans , Metabolome , Metabolomics
2.
Front Pharmacol ; 12: 688670, 2021.
Article in English | MEDLINE | ID: mdl-34335255

ABSTRACT

Uncaria Hook (UH) is a dry stem with hook of Ucaria plant and is contained in Traditional Japanese and Chinese medicine such as yokukansan, yokukansankachimpihange, chotosan, Gouteng-Baitouweng, and Tianma-Gouteng Yin. UH contains active indole and oxindole alkaloids and has the therapeutic effects on ailments of the cardiovascular and central nervous systems. The recent advances of analytical technology led to reports of detailed pharmacokinetics of UH alkaloids. These observations of pharmacokinetics are extremely important for understanding the treatment's pharmacological activity, efficacy, and safety. This review describes properties, pharmacology, and the recently accumulated pharmacokinetic findings of UH alkaloids, and discusses challenges and future prospects. UH contains major indole and oxindole alkaloids such as corynoxeine, isocorynoxeine, rhynchophylline, isorhynchophylline, hirsuteine, hirsutine, and geissoschizine methyl ether (GM). These alkaloids exert neuroprotective effects against Alzheimer's disease, Parkinson's disease, and depression, and the mechanisms of these effects include anti-oxidant, anti-inflammatory, and neuromodulatory activities. Among the UH alkaloids, GM exhibits comparatively potent pharmacological activity (e.g., agonist activity at 5-HT1A receptors). UH alkaloids are absorbed into the blood circulation and rapidly eliminated when orally administered. UH alkaloids are predominantly metabolized by Cytochrome P450 (CYP) and converted into various metabolites, including oxidized and demethylated forms. Regarding GM metabolism by CYPs, a gender-dependent difference is observed in rats but not in humans. Several alkaloids are detected in the brain after passing through the blood-brain barrier in rats upon orally administered. GM is uniformly distributed in the brain and binds to various channels and receptors such as the 5-HT receptor. By reviewing the pharmacokinetics of UH alkaloids, challenges were found, such as differences in pharmacokinetics between pure drug and crude drug products administration, food-influenced absorption, metabolite excretion profile, and intestinal tissue metabolism of UH alkaloids. This review will provide readers with a better understanding of the pharmacokinetics of UH alkaloids and their future challenges, and will be helpful for further research on UH alkaloids and crude drug products containing UH.

4.
NPJ Syst Biol Appl ; 7(1): 6, 2021 01 27.
Article in English | MEDLINE | ID: mdl-33504811

ABSTRACT

Lipid mediators are major factors in multiple biological functions and are strongly associated with disease. Recent lipidomics approaches have made it possible to analyze multiple metabolites and the associations of individual lipid mediators. Such systematic approaches have enabled us to identify key changes of biological relevance. Against this background, a knowledge-based pathway map of lipid mediators would be useful to visualize and understand the overall interactions of these factors. Here, we have built a precise map of lipid mediator metabolic pathways (LimeMap) to visualize the comprehensive profiles of lipid mediators that change dynamically in various disorders. We constructed the map by focusing on ω-3 and ω-6 fatty acid metabolites and their respective metabolic pathways, with manual curation of referenced information from public databases and relevant studies. Ultimately, LimeMap comprises 282 factors (222 mediators, and 60 enzymes, receptors, and ion channels) and 279 reactions derived from 102 related studies. Users will be able to modify the map and visualize measured data specific to their purposes using CellDesigner and VANTED software. We expect that LimeMap will contribute to elucidating the comprehensive functional relationships and pathways of lipid mediators.


Subject(s)
Lipid Metabolism/physiology , Lipidomics/methods , Systems Biology/methods , Fatty Acids, Omega-3/metabolism , Fatty Acids, Omega-6/metabolism , Humans , Metabolic Networks and Pathways/physiology , Software
5.
J Ethnopharmacol ; 264: 113354, 2021 Jan 10.
Article in English | MEDLINE | ID: mdl-32898626

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Geissoschizine methyl ether (GM), an indole alkaloid from Uncaria hook, is an active ingredient in the traditional Japanese Kampo medicine yokukansan, which is used to treat neurosis, insomnia, irritability, and night crying in children. AIM OF THE STUDY: Recent our pharmacokinetic studies suggested that there may be gender differences in the plasma concentrations of GM in rats, but not in humans. However, the details of this difference remain unverified. The purpose of this study was to clarify the reasons for the gender differences in rats. MATERIALS AND METHODS: GM plasma pharmacokinetics was compared in male and female rats orally administered yokukansan (4 g/kg). To confirm the involvement of cytochrome P450 (CYP) in GM liver metabolism, GM was incubated with male and female rat liver S9 fraction in the absence or presence of 1-aminobenzotriazole (a nonspecific CYP inhibitor). CYP isoforms involved in GM metabolism were estimated using recombinant rat CYP isoforms and anti-rat CYP antibodies. RESULTS: The maximum GM plasma concentrations were significantly higher in female than in male rats. When GM was incubated with rat liver S9 fractions, GM reduction was more striking in male S9 (69.3%) than that in female S9 (10.0%) and was completely blocked with nonspecific CYP inhibitor 1-aminobenzotriazole. Screening experiments using recombinant rat cytochrome P450 (CYP) isoforms showed that CYP1A1, CYP2C6, CYP2C11, CYP2D1, and CYP3A2 were involved in GM metabolism. Of these CYP isoforms, the use of anti-rat CYP antibodies indicated that male-dependent CYP2C11 and CYP3A2 were predominantly involved in the liver microsomal GM metabolism with gender differences. CONCLUSIONS: These results suggest that the cause of gender differences in plasma GM pharmacokinetics in rats is most likely because of male-dependent CYP2C11 and CYP3A2, and provide also useful information to further evaluate the pharmacological and toxicological effects in future. This study is the first to demonstrate that the gender differences in plasma GM pharmacokinetics in rats are caused by the gender-dependent metabolism of GM.


Subject(s)
Indole Alkaloids/blood , Microsomes, Liver/drug effects , Sex Characteristics , Uncaria , Animals , Aryl Hydrocarbon Hydroxylases/metabolism , Cytochrome P-450 CYP3A/metabolism , Cytochrome P450 Family 2/metabolism , Drugs, Chinese Herbal/metabolism , Drugs, Chinese Herbal/pharmacology , Female , Indole Alkaloids/metabolism , Indole Alkaloids/pharmacology , Liver/drug effects , Liver/enzymology , Male , Microsomes, Liver/enzymology , Plasma/drug effects , Plasma/metabolism , Rats , Rats, Sprague-Dawley , Steroid 16-alpha-Hydroxylase/metabolism
6.
Molecules ; 25(18)2020 Sep 18.
Article in English | MEDLINE | ID: mdl-32962000

ABSTRACT

The Japanese traditional medicine maobushisaishinto (MBST) has been prescribed for treating upper respiratory tract infections, such as a common cold. However, its mode of action is poorly understood, especially concerning the MBST constituent Asiasari Radix (AR). In this study, we focused on AR, with an objective of clarifying its bioavailable active ingredients and role within MBST by performing pharmacokinetic and pharmacological studies. Firstly, we performed qualitative non-targeted analysis utilizing high-resolution mass spectrometry to explore the bioavailable ingredients of AR as well as quantitative targeted analysis to reveal plasma concentrations following oral administration of MBST in rats. Secondly, we performed in vitro pharmacological study of bioavailable AR ingredients in addition to other ingredients of MBST to confirm any agonistic activities against transient receptor potential (TRP) channels. As a result, methyl kakuol and other compounds derived from AR were detected in the rat plasma and showed agonistic activity against TRPA1. This study suggests that methyl kakuol as well as other compounds have the potential to be an active ingredient in AR and thus presumably would contribute in part to the effects exerted by MBST.


Subject(s)
Drugs, Chinese Herbal/chemistry , Tandem Mass Spectrometry/methods , Transient Receptor Potential Channels/chemistry , Animals , Chromatography, High Pressure Liquid , Drugs, Chinese Herbal/analysis , Drugs, Chinese Herbal/metabolism , Half-Life , Male , Medicine, Traditional , Nitric Oxide/metabolism , Plants, Medicinal/chemistry , Plants, Medicinal/metabolism , Rats , Rats, Sprague-Dawley , Transient Receptor Potential Channels/metabolism
7.
Metabolomics ; 16(5): 63, 2020 04 25.
Article in English | MEDLINE | ID: mdl-32335721

ABSTRACT

INTRODUCTION: Traditional herbal medicine (THM) contains a vast number of natural compounds with varying degrees of pharmacological activity. To elucidate the mode of action, comprehensive metabolite profiling in the plasma before and after administration of THM is essential. OBJECTIVE: The aim of this study was to explore and identify/annotate converted metabolites after administration of THM in humans. METHODS: We performed untargeted metabolome analysis of human plasma collected before and after administration of maoto (ma-huang-tang), a traditional Japanese Kampo medicine. Maoto-derived metabolites were then selected and annotated following the DAC-Met strategy, which is an annotation method that uses mass differences of major metabolic reactions among the detected peaks and a differential network analysis. RESULTS: About 80% of maoto-derived components were found to be converted forms. Following DAC-Met, the structures of 15 previously unidentified metabolites were determined, and five of these were later confirmed with authentic standards. Using published literature, we also reconstructed the metabolic pathway of maoto components in humans. A kinetic time-course analysis revealed their diverse kinetic profiles. CONCLUSION: The results demonstrated that time-resolved comprehensive metabolite profiling in plasma using the DAC-Met strategy is highly useful for elucidating the complex nature of THM.


Subject(s)
Drugs, Chinese Herbal/metabolism , Metabolomics , Plant Extracts/metabolism , Administration, Oral , Animals , Drugs, Chinese Herbal/administration & dosage , Drugs, Chinese Herbal/analysis , Humans , Male , Mass Spectrometry , Molecular Structure , Plant Extracts/administration & dosage , Plant Extracts/blood , Rats , Rats, Sprague-Dawley
8.
Data Brief ; 22: 359-364, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30596132

ABSTRACT

This data article contains the data on metabolic profiling of healthy human subjects' plasma before and after administration of the Japanese Kampo medicine maoto. Four healthy human subjects were recruited. Plasma samples were collected before and 0.25, 0.5, 1, 2, 4 and 8 h after maoto treatment. Endogenous and exogenous compounds in plasma were analyzed using MS. Endogenous compounds including saccharides, amino acids, organic acids and other hydrophilic metabolites were semi-quantitatively measured using GC-MS/MS. Lipid mediators such as arachidonic acid, docosahexaenoic acid and eicosapentaenoic acid were semi-quantitatively measured using LC-MS/MS. Maoto constituents in plasma were quantitatively measured using LC-MS/MS. The data files contain the area ratio values, which were normalized to the intensity of the internal standard, and plasma concentration of maoto compounds. The data article is related to the research article titled "Phenotyping analysis of the Japanese Kampo medicine maoto in healthy human subjects using wide-targeted plasma metabolomics" (Kitagawa et al., 2018).

9.
J Pharm Biomed Anal ; 164: 119-127, 2019 Feb 05.
Article in English | MEDLINE | ID: mdl-30368117

ABSTRACT

Traditional herbal medicine (THM) consists of a vast number of compounds that exert pharmacological effects throughout the body. Comprehensive phenotyping analysis using omics is essential for understanding the nature of THM in detail. We previously reported that the Japanese Kampo medicine maoto ameliorated flu-like symptoms in a rat infection model and dynamically changed plasma metabolites as indicated by metabolome analysis. The aim of this study was to apply wide-targeted plasma metabolomics with quantitative analysis of maoto compounds in a human clinical trial to evaluate the effect of maoto on plasma metabolites. Four healthy human subjects were recruited. Plasma samples were collected before and 0.25, 0.5, 1, 2, 4 and 8 h after maoto treatment. Wide-targeted metabolomics and quantitative analysis of the main chemical constituents of maoto were then performed. Plasma metabolome analysis revealed that maoto administration decreased essential amino acids including branched-chain amino acids (BCAAs) and increased various kinds of ω-3 fatty acids including eicosapentaenoic acid and docosahexaenoic acid, consistent with previous studies in rats. Fifteen of the major compounds in maoto were identified in the systemic circulation. Finally, the correlation between endogenous metabolites and maoto compounds in plasma was analyzed and the results indicated that the decrease in plasma BCAAs might be caused by ephedrines present in maoto. The present study demonstrated that plasma metabolomic studies of endogenous and exogenous metabolites are useful for elucidating the mechanism of action of THM.


Subject(s)
Amino Acids, Branched-Chain/metabolism , Drugs, Chinese Herbal/pharmacology , Fatty Acids, Omega-3/metabolism , Medicine, Kampo/methods , Metabolomics/methods , Adult , Amino Acids, Branched-Chain/blood , Drugs, Chinese Herbal/administration & dosage , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/metabolism , Fatty Acids, Omega-3/blood , Healthy Volunteers , Humans , Male , Metabolome , Metabolomics/instrumentation
10.
NPJ Syst Biol Appl ; 3: 32, 2017.
Article in English | MEDLINE | ID: mdl-29075514

ABSTRACT

Pharmacological activities of the traditional Japanese herbal medicine (Kampo) are putatively mediated by complex interactions between multiple herbal compounds and host factors, which are difficult to characterize via the reductive approach of purifying major bioactive compounds and elucidating their mechanisms by conventional pharmacology. Here, we performed comprehensive compound, pharmacological and metabolomic analyses of maoto, a pharmaceutical-grade Kampo prescribed for flu-like symptoms, in normal and polyI:C-injected rats, the latter suffering from acute inflammation via Toll-like receptor 3 activation. In total, 352 chemical composition-determined compounds (CCDs) were detected in maoto extract by mass spectrometric analysis. After maoto treatment, 113 CCDs were newly detected in rat plasma. Of these CCDs, 19 were present in maoto extract, while 94 were presumed to be metabolites generated from maoto compounds or endogenous substances such as phospholipids. At the phenotypic level, maoto ameliorated the polyI:C-induced decrease in locomotor activity and body weight; however, body weight was not affected by individual maoto components in isolation. In accordance with symptom relief, maoto suppressed TNF-α and IL-1ß, increased IL-10, and altered endogenous metabolites related to sympathetic activation and energy expenditure. Furthermore, maoto decreased inflammatory prostaglandins and leukotrienes, and increased anti-inflammatory eicosapentaenoic acid and hydroxyl-eicosapentaenoic acids, suggesting that it has differential effects on eicosanoid metabolic pathways involving cyclooxygenases, lipoxygenases and cytochrome P450s. Collectively, these data indicate that extensive profiling of compounds, metabolites and pharmacological phenotypes is essential for elucidating the mechanisms of herbal medicines, whose vast array of constituents induce a wide range of changes in xenobiotic and endogenous metabolism.

11.
Sci Rep ; 7: 44098, 2017 03 08.
Article in English | MEDLINE | ID: mdl-28272490

ABSTRACT

Maoto, a traditional Japanese Kampo medicine, has been used to treat various respiratory diseases, including respiratory infections and influenza. Ephedrine (EPD), the main ingredient in maoto, is also clinically used to treat respiratory diseases. However, the pharmacokinetics and distribution of EPD in the lungs after the administration of maoto have not been demonstrated. This study aimed to determine the concentrations, distribution, and pharmacokinetics of EPD and its precursor methylephedrine (MEPD) in the lungs of rats orally administered maoto (1 and 4 g/kg). We used liquid chromatography-electrospray ionization-tandem mass spectrometry to measure the ingredient concentrations. Both ingredients were detected in maoto-treated lung homogenates. Next, we examined the distribution of both ingredients in lung sections by using matrix-assisted laser desorption/ionization-mass spectrometry imaging, a powerful tool for the visualization of the distribution of biological molecules. The mass spectrometry imaging analysis detected only EPD and provided the first visual demonstration that EPD is distributed in the alveoli, bronchi, and bronchioles in the lungs of rats orally administered maoto (4 g/kg, three times at 2-h intervals). These results suggest that the pharmacological efficacy of maoto for the amelioration of respiratory symptoms is related to the distribution of EPD in the lung.


Subject(s)
Ephedrine/analogs & derivatives , Ephedrine/analysis , Ephedrine/pharmacology , Lung/chemistry , Medicine, Kampo , Administration, Oral , Animals , Ephedrine/chemistry , Japan , Lung/drug effects , Male , Mass Spectrometry , Plant Extracts/chemistry , Rats, Sprague-Dawley
12.
J Nat Med ; 71(1): 131-138, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27619505

ABSTRACT

Recent pharmacokinetic studies have revealed that ginsenosides, the major ingredients of ginseng (the roots of Panax ginseng), are present in the plasma collected from subjects receiving ginseng, and speculated that ginsenosides might be actively transported via glucose transporters. We evaluated whether ginsenosides Rb1 and Rg1, and their metabolites from enteric bacteria act as substrates of sodium-glucose cotransporter (SGLT) 1, the major glucose transporter expressed on the apical side of intestinal epithelial cells. First, we evaluated the competing effects of ginseng extract and ginsenosides on the uptake of [14C]methyl-glucose, a substrate of SGLT1, by SGLT1-overexpressing HEK293 cells. A boiling water extract of ginseng inhibited SGLT1 in a concentration-dependent manner with an IC50 value of 0.85 mg/ml. By activity-guided fractionation, we determined that the fraction containing ginsenosides displayed an inhibitory effect on SGLT1. Of the ginsenosides evaluated, protopanaxatriol-type ginsenosides were not found to inhibit SGLT1, whereas protopanaxadiol-type ginsenosides, including ginsenosides Rd, Rg3, Rh2, F2 and compound K, exhibited significant inhibitory effects on SGLT1, with ginsenoside F2 having the highest activity with an IC50 value of 23.0 µM. Next, we measured the uptake of ginsenoside F2 and compound K into Caco-2 cells, a cell line frequently used to evaluate the intestinal absorption of drugs. The uptake of ginsenoside F2 and compound K into Caco-2 cells was not competitively inhibited by glucose. Furthermore, the uptake of ginsenoside F2 and compound K into SGLT1-overexpressing HEK293 cells was not significantly higher than into mock cells. Ginsenoside F2 and compound K did not appear to be substrates of SGLT1, although these compounds could inhibit SGLT1. Ginsenosides might be absorbed by passive diffusion through the intestinal membrane or actively transported via unknown transporters other than SGLT1.


Subject(s)
Panax/chemistry , Plant Roots/chemistry , Sodium-Glucose Transporter 1/metabolism , Ginsenosides/pharmacology , HEK293 Cells , Humans
13.
Xenobiotica ; 46(4): 325-34, 2016.
Article in English | MEDLINE | ID: mdl-26337900

ABSTRACT

1. Yokukansan (YKS) is a traditional Japanese medicine also called kampo, which has been used to treat neurosis, insomnia, and night crying and peevishness in children. Geissoschizine methyl ether (GM), a major indole alkaloid found in Uncaria hook, has been identified as a major active component of YKS with psychotropic effects. Recently, GM was reported to have a partial agonistic effect on serotonin 5-HT1A receptors. However, there is little published information on GM metabolism in humans, although several studies reported the blood kinetics of GM in rats and humans. In this study, we investigated the GM metabolic pathways and metabolizing enzymes in humans. 2. Using recombinant human cytochrome P450 (CYP) isoforms and polyclonal antibodies to CYP isoforms, we found that GM was metabolized into hydroxylated, dehydrogenated, hydroxylated+dehydrogenated, demethylated and water adduct forms by some CYP isoforms. 3. The relative activity factors in human liver microsomes were calculated to determine the relative contributions of individual CYP isoforms to GM metabolism in human liver microsomes (HLMs). We identified CYP3A4 as the CYP isoform primarily responsible for GM metabolism in human liver microsomes. 4. These findings provide an important basis for understanding the pharmacokinetics and pharmacodynamics of GM and YKS.


Subject(s)
Cytochrome P-450 Enzyme System/metabolism , Drugs, Chinese Herbal/chemistry , Indole Alkaloids/metabolism , Chromatography, Liquid , Female , Humans , Indole Alkaloids/chemistry , Isoenzymes/metabolism , Male , Metabolic Networks and Pathways , Metabolome , Microsomes, Liver/metabolism , Recombinant Proteins/metabolism , Substrate Specificity , Tandem Mass Spectrometry
14.
Pharmacol Res Perspect ; 3(5): e00165, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26516578

ABSTRACT

A pharmaceutical grade Japanese traditional medicine, daikenchuto (TU-100), consisting of Japanese pepper, processed ginger, and ginseng, has been widely used for various intestinal disorders in Japan and now under development as a new therapeutic drug in the US. It is suggested that TU-100 ingredients exert pharmacological effects on intestines via two routes, from the luminal side before absorption and the peripheral blood stream after absorption. Therefore, in order to fully understand the pharmacological actions of TU-100, it is critically important to know the intraluminal amounts and forms of ingested TU-100 ingredients. In the present study, after administrating TU-100 to rats, the concentrations of TU-100 ingredients and their conjugates in the peripheral and portal blood and ileal contents were determined by LC-MS/MS. Next, TU-100 was administered to patients with ileostomy bags, but whose small intestines are diagnosed as healthy, and the ingredients/conjugates in the ileal effluent were analyzed. The results suggest that: (1) Pepper ingredients hydroxysanshools are rapidly absorbed and enter systemic circulation, (2) Ginseng ingredients ginsenosides are transported to the colon with the least absorption, (3) Ginger ingredients gingerols are absorbed and some conjugated in the small intestine and transported via the portal vein. While only a small amount of gingerols/gingerol conjugates enter systemic circulation, considerable amounts reappear in the small intestine. Thus, the effect of TU-100 on the intestines is believed to be a composite of multiple actions by multiple compounds supplied via multiple routes.

15.
J Nat Med ; 69(3): 287-95, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25783410

ABSTRACT

Shakuyakukanzoto (SKT) is a kampo medicine composed of equal proportions of Glycyrrhizae radix (G. radix) and Paeoniae radix (P. radix). A double-blind study reported that SKT significantly ameliorated painful muscle cramp in cirrhosis patients without the typical severe side effects of muscle weakness and central nervous system (CNS) depression. Previous basic studies reported that SKT and its active components induced relaxation by a direct action on skeletal muscle and that SKT did not depress CNS functions; however, why SKT has a lower incidence of muscle weakness remains unknown. In the present study, we investigated which components are absorbed into the blood of rats after a single oral administration of SKT to identify the active components of SKT. We also investigated the effects of SKT and its components on the twitch contraction induced by physiological Ca(2+) release. Our study demonstrated that SKT and five G. radix isolates, which are responsible for the antispasmodic effect of SKT, did not inhibit the twitch contraction in contrast to dantrolene sodium, a direct-acting peripheral muscle relaxant, indicating that the mechanisms of muscle contraction of SKT and dantrolene in skeletal muscle differ. These findings suggest that SKT does not reduce the contractile force in skeletal muscle under physiological conditions, i.e., SKT may have a low risk of causing muscle weakness in clinical use. Considering that most muscle relaxants and anticonvulsants cause various harmful side effects such as weakness and CNS depression, SKT appears to have a benign safety profile.


Subject(s)
Drugs, Chinese Herbal/pharmacology , Muscle Contraction/drug effects , Muscle, Skeletal/physiology , Neuromuscular Agents/pharmacology , Animals , Calcium Signaling , Dantrolene/pharmacology , Drug Combinations , Drug Evaluation, Preclinical , Drugs, Chinese Herbal/pharmacokinetics , Glycyrrhiza/chemistry , Male , Muscle, Skeletal/drug effects , Neuromuscular Agents/pharmacokinetics , Paeonia/chemistry , Rats , Rats, Sprague-Dawley , Rats, Wistar
16.
Molecules ; 20(2): 2100-14, 2015 Jan 27.
Article in English | MEDLINE | ID: mdl-25633336

ABSTRACT

Geissoschizine methyl ether (GM) is an indole alkaloid found in Uncaria hook, which is a galenical constituent of yokukansan, a traditional Japanese medicine. GM has been identified as the active component responsible for anti-aggressive effects. In this study, the metabolic profiling of GM in rat and human liver microsomes was investigated. Thirteen metabolites of GM were elucidated and identified using a high-performance liquid chromatography with tandem mass spectrometry method, and their molecular structures were proposed on the basis of the characteristics of their precursor ions, product ions, and chromatographic retention times. There were no differences in the metabolites between the rat and human liver microsomes. Among the 13 identified metabolites, there were two demethylation metabolites, one dehydrogenation metabolite, three methylation metabolites, three oxidation metabolites, two water-adduct metabolites, one di-demethylation metabolite, and one water-adduct metabolite followed by oxidation. The metabolic pathways of GM were proposed on the basis of this study. This study will be helpful in understanding the metabolic routes of GM and related Uncaria hook alkaloids, and provide useful information on the pharmacokinetics and pharmacodynamics. This is the first report that describes the separation and identification of GM metabolites in rat and human liver microsomes.


Subject(s)
Indole Alkaloids/metabolism , Microsomes, Liver/metabolism , Plant Extracts/metabolism , Tranquilizing Agents/metabolism , Uncaria/chemistry , Animals , Biotransformation , Chromatography, High Pressure Liquid , Female , Humans , Hydrogenation , Male , Methylation , Oxidation-Reduction , Rats, Sprague-Dawley , Tandem Mass Spectrometry
17.
J Ethnopharmacol ; 158 Pt A: 264-70, 2014 Dec 02.
Article in English | MEDLINE | ID: mdl-25456433

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Geissoschizine methyl ether (GM) is an indole alkaloid that is a component of Uncaria Hook, and has been identified as the active component responsible for the anti-aggressive effects of the Uncaria Hook-containing traditional Japanese medicine, yokukansan. Recently, GM was shown to reach the brain by crossing the blood-brain barrier in rats following the oral administration of yokukansan. This finding suggested that there may be specific binding sites for GM in the brain. Here we show evidence that tritium-labeled GM ([(3)H]GM) binds specifically to several brain areas of rats. MATERIALS AND METHODS: Male rats were used. [(3)H]GM was synthesized from a demethylated derivative of GM. Specific binding sites of [(3)H]GM on brain sections were determined by quantitative autoradiography, and maximum binding densities (Bmax) and dissociation constants (Kd) were calculated. Several chemical compounds were used to clarify the molecules that recognize [(3)H]GM in the completion-binding assay. Emulsion microautoradiography was also performed to identify the cells that bind [(3)H]GM. RESULTS: Specific binding of [(3)H]GM was observed in the frontal cortex, including the prefrontal cortical region (e.g., prelimbic cortex (PrL)), hippocampus, caudate putamen, amygdala, central medial thalamic nucleus, dorsal raphe nucleus (DR), and cerebellum. Bmax ranged between 0.65 and 8.79pmol/mg tissue, and Kd was between 35.0 and 232.6nM. Specific binding with relatively high affinity (Kd less than 62nM) was dense in the frontal cortical region, moderate in the DR, and sparse in the cerebellum. The specific binding of [(3)H]GM in the PrL was significantly replaced by the serotonin 1A (5-HT1A) receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (DPAT), 5-HT2A receptor antagonist ketanserin, 5-HT2B receptor agonist BW 723C86, 5-HT2C receptor agonist RO60-0175, adrenergic α2A receptor antagonist yohimbine, L-type Ca(2+) channel blocker verapamil, and µ-opioid receptor antagonist naloxone. Similar results were obtained in the frontal cortex and DR, but not in the cerebellum. Microautoradiography revealed that [(3)H]GM signals were distributed throughout the frontal cortex, which included neuron-like large cells. CONCLUSION: These results demonstrate that specific binding sites for GM exist in rat brain tissue, and suggest that the pharmacological actions of GM are mainly associated with 5-HT receptors in the frontal cortex and DR. These results provide an insight into the neuropharmacology of GM and GM-containing herbal medicines.


Subject(s)
Brain/drug effects , Indole Alkaloids/pharmacology , Uncaria/chemistry , Animals , Autoradiography , Blood-Brain Barrier , Brain/metabolism , Indole Alkaloids/metabolism , Indole Alkaloids/pharmacokinetics , Male , Rats , Rats, Wistar
18.
Biomed Chromatogr ; 27(12): 1647-56, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23813572

ABSTRACT

Uncaria Hook (UH) alkaloids are involved in the beneficial effects of Yokukansan. However, the pharmacokinetics of UH alkaloids after oral administration of Yokukansan has not yet been sufficiently investigated. Therefore, we developed and validated a sensitive and specific high-performance liquid chromatography with tandem mass spectrometry (LC/MS/MS) method for the simultaneous quantitation of seven UH alkaloids (corynoxeine, isocorynoxeine, rhynchophylline, isorhynchophylline, hirsutine, hirsuteine and geissoschizine methyl ether) in rat plasma and brain. After protein precipitation with acetonitrile, chromatographic separation was performed using an Ascentis Express RP-amide column, with gradient elution with 0.2% formic acid and acetonitrile at 0.3 mL/min. All analytes in the plasma and brain showed good linearity over a wide concentration range (r > 0.995). Intra-day and inter-day variations of each constituent were 8.6 and 8.0% or less in the plasma, and 14.9 and 15.0% or less in the brain, respectively. The validated LC/MS/MS method was applied in the pharmacokinetic studies of UH alkaloids after oral administration of Yokukansan to rats. In the plasma, rhynchophylline, hirsutine, hirsuteine and geissoschizine methyl ether were detected, but only geissoschizine methyl ether was detected in the brain. These results suggest that geissoschizine methyl ether is an important constituent of the pharmacological effects of Yokukansan.


Subject(s)
Alkaloids/chemistry , Brain Chemistry , Drugs, Chinese Herbal/administration & dosage , Indoles/chemistry , Uncaria/chemistry , Alkaloids/analysis , Alkaloids/blood , Animals , Chromatography, High Pressure Liquid/methods , Indoles/analysis , Indoles/blood , Linear Models , Male , Rats , Rats, Sprague-Dawley , Reproducibility of Results , Sensitivity and Specificity , Tandem Mass Spectrometry/methods
19.
Cell Mol Neurobiol ; 31(5): 787-93, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21442303

ABSTRACT

Geissoschizine methyl ether (GM) in Uncaria hook, a galenical constituent of yokukansan is thought to be one of active components in the psychotropic effect of yokukansan, a traditional Japanese medicine (kampo medicine). However, there is no data on the blood-brain barrier (BBB) permeability of Uncaria hook-derived alkaloids containing GM. In this study, we investigated the BBB permeability of seven Uncaria hook alkaloids (GM, isocorynoxeine, isorhynchophylline, hirsuteine, hirsutine, rhynchophylline, and corynoxeine) using in vivo and in vitro methods. In the in vivo experiment, seven alkaloids in the plasma and brain of rats orally administered with yokukansan were measured by liquid chromatography-mass spectroscopy/mass spectrometric multiple reaction monitoring assay. In the in vitro experiment, the BBB permeability of seven alkaloids were examined using the BBB model composed of co-culture of endothelial cells, pericytes, and astrocytes. In the in vivo study, six components containing GM but not isocorynoxeine were detected in the plasma, and three (GM, hirsuteine, and corynoxeine) of components were detected in the brain. The in vitro BBB permeability data indicated that seven alkaloids were able to cross brain endothelial cells in culture conditions and that the BBB permeability of GM was higher than those of the other six alkaloids. These results suggest that target ingredient GM in yokukansan administered orally is absorbed into the blood and then reaches the brain through the BBB. This evidence further supports the possibility that GM is an active component in the psychotropic effect of yokukansan.


Subject(s)
Blood-Brain Barrier/metabolism , Drugs, Chinese Herbal/chemistry , Indoles/metabolism , Medicine, East Asian Traditional , Uncaria/chemistry , Administration, Oral , Animals , Blood-Brain Barrier/drug effects , Drugs, Chinese Herbal/administration & dosage , Drugs, Chinese Herbal/pharmacology , Electric Impedance , Hydrophobic and Hydrophilic Interactions/drug effects , Indole Alkaloids , Indoles/blood , Indoles/chemistry , Indoles/pharmacology , Japan , Models, Biological , Permeability/drug effects , Rats
20.
Biol Pharm Bull ; 28(10): 1897-902, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16204942

ABSTRACT

In the course of our clinical studies of Kampo medicine (traditional Japanese medicines), we observed the pharmacokinetic interactions between two herbs. When Onpito (TJ-8117, Kampo medicine) containing licorice and rhubarb was administered orally to human subjects, we observed that the AUC(0-lim) and Cmax of glycyrrhetic acid (GA) in plasma were lower than those treated with other Kampo medicines containing licorice. In this study, we demonstrate the pharmacokinetic interactions of GA derived from glycyrrhizinic acid (GL) in licorice and anthraquinones derived from rhubarb. To our knowledge, this is the first report to investigate the pharmacokinetic interactions between two herbs. When GL was orally co-administrated to rats with a non-effective dose of sennoside A having purgative activity, the AUC(0-lim) and Cmax of GA decreased. In addition, sennoside A did not affect the metabolism of GL by the intestinal bacteria in vitro. In the examination using an in situ loop of rat colon, the remaining ratio of GA rose drastically by the co-administration of sennoside A, sennidin A and rhein. Observed inhibition activity of these anthraquinones on GA absorption depended on the concentration of the components added. The maximum inhibition ratio was approximately 75% by rhein, 60% by sennoside A and 25% by sennidin A. We conclude that the decrease of the pharmacokinetic parameters of GA in human plasma observed in the clinical study of TJ-8117 is attributable to an interactive action of absorption from the intestinal tract by anthraquinones contained in or derived from rhubarb.


Subject(s)
Anthraquinones/pharmacology , Glycyrrhetinic Acid/pharmacokinetics , Animals , Area Under Curve , Chromatography, High Pressure Liquid , Glycyrrhetinic Acid/analysis , Glycyrrhetinic Acid/blood , Immunoenzyme Techniques , Intestinal Absorption , Intestines/microbiology , Male , Rats , Rats, Sprague-Dawley , Senna Extract , Sennosides
SELECTION OF CITATIONS
SEARCH DETAIL
...