Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 16(10): 13178-13190, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38427781

ABSTRACT

This study investigates the influence of surface nitridation of Ta metal foil substrates on the growth of GaN nanorods using the laser molecular beam epitaxy (LMBE) technique and the field emission characteristics of the grown GaN nanorod ensemble. Surface morphology examinations underscore the pivotal role of Ta foil nitridation in shaping the dimensions and densities of GaN nanorods. Bare Ta foil fosters the formation of high-density, vertically self-aligned GaN nanorods at a growth temperature of 700 °C. Furthermore, the density of these nanorods is directly related to the duration of Ta foil nitridation, with increased duration leading to a reduced nanorod density. X-ray Photoelectron Spectroscopy (XPS) studies reveal that the transition of the Ta foil surface from tantalum oxide to tantalum nitride during nitridation emerges as a crucial factor influencing GaN nanorod growth. Photoluminescence (PL) spectroscopy at ambient temperature reveals a strong near-band-edge (NBE) emission peak with negligible defect-related peaks, displaying the high optical quality of the GaN nanorods. The highly dense vertically aligned GaN nanorod ensemble growth without Ta prenitridation exhibits the most favorable field emission performance, featuring a turn-on field of 2.1 V/µm, a field enhancement factor of 2480, and a stable long-term operation at the emission current density of 2.26 mA/cm2. This study advances the understanding of the role of the surface chemistry of metal foil in determining GaN nanorod growth and opens up exciting possibilities for tailoring advanced optoelectronic devices for specific application requirements.

2.
ACS Sens ; 8(8): 3146-3157, 2023 08 25.
Article in English | MEDLINE | ID: mdl-37566695

ABSTRACT

Herein, we present, a chemiresistive-type gas sensor composed of two-dimensional 1T-2H phase MoSe2 and MoO3. Mixed phase MoSe2 and MoSe2/MoO3 composites were synthesized via a facile hydrothermal method. The structure analysis using X-ray diffraction, Raman spectroscopy, and X-ray photoelectron spectroscopy revealed the formation of different phases of MoSe2 at different temperatures. With increase in synthesis temperature from 180 to 200 °C, the relative percentage of 1T and 2H-MoSe2 phases changed from 80 to 48%. On the other hand, at 220 °C, 2H-MoSe2 was obtained as a major component. The gas sensing properties of individual MoSe2 and composites were investigated at room temperature toward various analytes. The obtained results revealed that composites possess improved sensing features as compared with individual MoSe2 or MoO3. Data also revealed that the composite with dominating 1T-phase exhibits relatively higher response (10%, at 10 ppm) for dimethylformamide (DMF) compared to triethylamine (TEA) (3%, at 10 ppm). In contrast, the composite with larger 2H-phase exhibited affinity toward TEA and had a relative response of about 2%. Therefore, selectivity of a sensor device can be tuned by an appropriately designed MoSe2/MoO3 composite. These results signify the importance of MoO3-based composites with dual-phase MoSe2 for successfully discriminating between DMF and TEA at room-temperature.


Subject(s)
Dimethylformamide , Ethylamines , Temperature
3.
ACS Appl Mater Interfaces ; 15(25): 30443-30454, 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37326513

ABSTRACT

The development of imaging technology and optical communication demands a photodetector with high responsiveness. As demonstrated by microfabrication and nanofabrication technology advancements, recent progress in plasmonic sensor technologies can address this need. However, these photodetectors have low optical absorption and ineffective charge carrier transport efficiency. Sb2Se3 is light-sensitive material with a high absorption coefficient, making it suitable for photodetector applications. We developed an efficient, scalable, low-cost near-infrared (NIR) photodetector based on a nanostructured Sb2Se3 film deposited on p-type micropyramidal Si (made via the wet chemical etching process), working on photoconductive phenomena. Our results proved that, at the optimized thickness of the Sb2Se3 layer, the proposed Si micropyramidal substrate enhanced the responsivity nearly two times, compared with that of the Sb2Se3 deposited on a flat Si reference sample and a glass/Sb2Se3 sample at 1064 nm (power density = 15 mW/cm2). More interestingly, the micropyramidal silicon-based device worked at 0 V bias, paving a path for self-bias devices. The highest specific detectivity of 2.25 × 1015 Jones was achieved at 15 mW/cm2 power density at a bias voltage of 0.5 V. It is demonstrated that the enhanced responsivity was closely linked with field enhancement due to the Kretschmann configuration of Si pyramids, which acts as hot spots for Si/Sb2Se3 junction. A high responsivity of 47.8 A W-1 proved it suitable for scalable and cost-effective plasmonic-based NIR photodetectors.

4.
Sci Rep ; 10(1): 10480, 2020 Jun 26.
Article in English | MEDLINE | ID: mdl-32591627

ABSTRACT

We report the band gap tuning and facilitated charge transport at perylenediimide (PDI)/GaN interface in organic-inorganic hybrid nanostructure system over flexible titanium (Ti) foil. Energy levels of the materials perfectly align and facilitate high efficiency charge transfer from electron rich n-GaN to electron deficient PDI molecules. Proper interface formation resulted in band gap tuning as well as facilitated electron transport as evident in I-V characteristics. Growth of PDI/GaN hybrid system with band gap tuning from ultra-violet to visible region and excellent electrical properties open up new paradigm for fabrication of efficient optoelectronics devices on flexible substrates.

5.
RSC Adv ; 8(57): 32794-32798, 2018 Sep 18.
Article in English | MEDLINE | ID: mdl-35547666

ABSTRACT

An enhanced self-powered near-ultraviolet photodetection phenomenon was observed in epitaxial gallium nitride (GaN) nanorods network grown on an intermediate layer of N:GaN on a nitridated HfO2(N:HfO2)/SiO2/p-Si substrate. The fabricated Au/GaN/N:GaN/N:HfO2/Ag heterostructure exhibited a giant change (OFF/ON ratio > 50 without applying any external electrical field) in its conductance when illuminated by a very weak (25 mW cm-2) near-UV monochromatic light with a low dark current (nearly 20 nA). The presented near-UV photodetector offers photoresponsivity of ∼2.4 mA W-1 at an applied voltage of 1 V. We observed an optically generated internal open circuit voltage of ∼155 mV and short circuit current ∼430 nA, which can be attributed to the quantum confinement of free charge carriers in the nanorod matrix. Interestingly, it also shows a negative capacitance after near-UV illumination. It has great potential as a self-powered UV photodetector and in metamaterial applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...