Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Sci Rep ; 13(1): 22236, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38097712

ABSTRACT

Discovering new stable materials with large dielectric permittivity is important for future energy storage and electronics applications. Theoretical and computational approaches help design new materials by elucidating microscopic mechanisms and establishing structure-property relations. Ab initio methods can be used to reliably predict the dielectric response, but for fast materials screening, machine learning (ML) approaches, which can directly infer properties from the structural information, are needed. Here, random forest and graph convolutional neural network models are trained and tested to predict the dielectric constant from the structural information. We create a database of the dielectric properties of oxides and design, train, and test the two ML models. Both approaches show similar performance and can successfully predict response based on the structure. The analysis of the feature importance allows identification of local geometric features leading to the high dielectric permittivity of the crystal. Dimensionality reduction and clustering further confirms the relevance of descriptors and compositional features for obtaining high dielectric permittivity.

2.
J Phys Condens Matter ; 35(29)2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37023776

ABSTRACT

Electronics, which harnesses the properties of electrons, has made remarkable progress since its inception and is a cornerstone of modern society. Ionics, which exploits the properties of ions, has also had a profound impact, as demonstrated by the award of the Nobel Prize in Chemistry in 2019 for achievements related to lithium-ion batteries (LIBs). Ionic conduction in solids is the flow of carrier ions through a solid owing to an electrical or chemical bias. Some ionic materials have been studied intensively because their ionic conductivities are higher than those of liquids, even though they are solids. Among various conductive species, fluoride ions are the most promising charge carriers for fluoride-ion batteries (FIBs) as post LIBs. Increasing fluoride-ion conductivity toward the superionic conductive region at room temperature would be a breakthrough for the room-temperature operation of all-solid-state FIBs. This review focuses on fluoride-ion conductors, from the general concept of ions to the characteristics of fluoride ions. Fluoride-ion conductors are classified according to material type and form, and our current understanding, identification of problems, and future directions are discussed from experimental and theoretical physics perspectives.

3.
Sci Rep ; 13(1): 3761, 2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36882507

ABSTRACT

We examine the effect of isovalent substitutions and co-doping on the ionic dielectric constant of paraelectric titanates (perovskite, Ruddlesden-Popper phases, and rutile) using density functional perturbation theory. Substitutions increase the ionic dielectric constant of the prototype structures, and new dynamically stable structures with εion ~ 102-104 are reported and analyzed. The boosting of ionic permittivity is attributed to local defect-induced strain, and maximum Ti-O bond length is proposed as a descriptor. The Ti-O phonon mode that is responsible for the large dielectric constant can be tuned by a local strain and symmetry lowering from substitutions. Our findings help explain the recently observed colossal permittivity in co-doped rutile, attributing its intrinsic permittivity boosting solely to the lattice polarization mechanism, without the need to invoke other mechanisms. Finally, we identify new perovskite- and rutile-based systems that can potentially display colossal permittivity.

4.
Nanoscale Adv ; 4(5): 1408-1413, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-36133675

ABSTRACT

Two-dimensional metals offer intriguing possibilities to explore the metallic and other related properties in systems with reduced dimensionality. Here, following recent experimental reports of synthesis of two-dimensional metallic gallium (gallenene) on insulating substrates, we conduct a computational search of gallenene structures using the Particle Swarm Optimization algorithm, and identify stable low energy structures. Our calculations of the critical temperature for conventional superconductivity yield values of ∼7 K for gallenene. We also emulate the presence of the substrate by introducing the external confining potential and test its effect on the structures with unstable phonons.

5.
J Am Chem Soc ; 144(16): 7497-7503, 2022 04 27.
Article in English | MEDLINE | ID: mdl-35427122

ABSTRACT

Two-dimensional transition metal dichalcogenides (TMD), such as molybdenum disulfide (MoS2), have aroused substantial research interest in recent years, motivating the quest for new synthetic strategies. Recently, halide salts have been reported to promote the chemical vapor deposition (CVD) growth of a wide range of TMD. Nevertheless, the underlying promoting mechanisms and reactions are largely unknown. Here, we employ first-principles calculations and ab initio molecular dynamics (AIMD) simulations in order to investigate the detailed molecular mechanisms during the salt-assisted CVD growth of MoS2 monolayers. The sulfurization of molybdenum oxyhalides MoO2X2 (X = F, Cl, Br, and I)─the form of Mo-feedstock dominating in salt-assisted synthesis─has been explored and displays much lower activation barriers than that of molybdenum oxide present during conventional "saltless" growth of MoS2. Furthermore, the rate-limiting barriers appear to depend linearly on the electronegativity of the halogen element, with oxyiodide having the lowest barrier. Our study reveals the promoting mechanisms of halides and allows growth parameter optimization to achieve even faster growth of MoS2 monolayers in the CVD synthesis.


Subject(s)
Cardiovascular Diseases , Transition Elements , Gases , Humans , Molybdenum/chemistry , Oxides , Sodium Chloride , Transition Elements/chemistry
6.
Nano Lett ; 22(7): 2934-2940, 2022 Apr 13.
Article in English | MEDLINE | ID: mdl-35290731

ABSTRACT

Electron optics is the systematic use of electromagnetic (EM) fields to control electron motions. In graphene, strain induces pseudo-electromagnetic fields to guide electron motion. Here we demonstrate the use of substrate topography to impart desirable strain on graphene to induce static pseudo-EM fields. We derive the quasi-classical equation of motion for Dirac Fermions in a pseudo-EM field in graphene and establish the correspondence between the quasi-classical and quantum mechanical snake states. Based on the trajectory analysis, we design sculpted substrates to realize various "optical devices" such as a converging lens or a collimator, and further propose a setup to achieve valley Hall effect solely through substrate patterning, without any external fields, to be used in valleytronics applications. Finally, we discuss how the predicted strain/pseudo-EM field patterns can be experimentally sustained by typical substrates and generalized to other 2D materials.

7.
J Phys Chem A ; 125(28): 6059-6063, 2021 Jul 22.
Article in English | MEDLINE | ID: mdl-34242026

ABSTRACT

There has been growing interest in searching for new low-dimensional (low-D) materials for nanoelectronics and energy applications. Most materials have their structural units extended in three dimensions and connected with chemical bonds. When the dimension is reduced, these bonds will be broken, decreasing the stability and making their experimental realization difficult. Here, we show that stable low-D materials can be made from naturally existing planar structural units. This is demonstrated by first-principles study of boron chalcogenides (B-X), which can have various low-D structures with attractive properties. For example, B2O3 can be the thinnest proton-exchange membrane for fuel cells. B-X are wide-gap semiconductors that can complement the narrow-gap 2D metal dichalcogenides for (opto)electronics. Our work sheds light on the stability of low-D materials and suggests guidelines for rational design of new materials.

8.
J Phys Chem Lett ; 12(17): 4299-4305, 2021 May 06.
Article in English | MEDLINE | ID: mdl-33913712

ABSTRACT

Electronic transport through a metal|semiconductor (M|S) heterojunction is largely determined by its Schottky barrier. In 3D M|S junctions, the barrier height determines the turn-on voltage and is often pinned by the interface states, causing Fermi level pinning (FLP). The pinning strength in 3D depends on the ratio Ci/CM between the interface quantum capacitance Ci and the metal surface capacitance CM. In 2D, the interface dipole does not influence the band alignment, but still affects the Schottky barrier and transport. In light of the general interest in building 2D electronics, in this work we discover the relevant material parameters which dictate the behavior and strength of FLP in 2D M|S contacts. Using a multiscale model combining first-principles, continuum electrostatics, and transport calculations, we study a realistic Gr|MoS2 interface as an example with high interface state density (Ci/CM ≫ 1). Transport calculations show partial pinning with a strength P ∼ 0.6, while a 3D junction with similar heterogeneity gives full pinning with P = 1 as expected. We further show that in 2D M|S contacts the turn-on voltage and pinning strength are affected by a physical parameter l/λD, the ratio between the interface width l, and the thermal de Broglie wavelength λD. Pinning is absent for ideal line-contacts (l/λD = 0), but increases for realistic l/λD values.

9.
ACS Nano ; 15(1): 447-454, 2021 01 26.
Article in English | MEDLINE | ID: mdl-33381965

ABSTRACT

Graphene is a promising material for many biointerface applications in engineering, medical, and life-science domains. Here, we explore the protection ability of graphene atomic layers to metals exposed to aggressive sulfate-reducing bacteria implicated in corrosion. Although the graphene layers on copper (Cu) surfaces did not prevent the bacterial attachment and biofilm growth, they effectively restricted the biogenic sulfide attack. Interestingly, single-layered graphene (SLG) worsened the biogenic sulfide attack by 5-fold compared to bare Cu. In contrast, multilayered graphene (MLG) on Cu restricted the attack by 10-fold and 1.4-fold compared to SLG-Cu and bare Cu, respectively. We combined experimental and computational studies to discern the anomalous behavior of SLG-Cu compared to MLG-Cu. We also report that MLG on Ni offers superior protection ability compared to SLG. Finally, we demonstrate the effect of defects, including double vacancy defects and grain boundaries on the protection ability of atomic graphene layers.


Subject(s)
Desulfovibrio , Graphite , Biofilms , Copper , Corrosion
10.
ACS Nano ; 14(11): 14809-14819, 2020 11 24.
Article in English | MEDLINE | ID: mdl-33104334

ABSTRACT

Corrosion by sulfur compounds is a long-standing challenge in many engineering applications. Specifically, designing a coating that protects metals from both abiotic and biotic forms of sulfur corrosion remains an elusive goal. Here we report that atomically thin layers (∼4) of hexagonal boron nitride (hBN) act as a protective coating to inhibit corrosion of the underlying copper (Cu) surfaces (∼6-7-fold lower corrosion than bare Cu) in abiotic (sulfuric acid and sodium sulfide) and biotic (sulfate-reducing bacteria medium) environments. The corrosion resistance of hBN is attributed to its outstanding barrier properties to the corrosive species in diverse environments of sulfur compounds. Increasing the number of atomic layers did not necessarily improve the corrosion protection mechanisms. Instead, multilayers of hBN were found to upregulate the adhesion genes in Desulfovibrio alaskensis G20 cells, promote cell adhesion and biofilm growth, and lower the protection against biogenic sulfide attack when compared to the few layers of hBN. Our findings confirm hBN as the thinnest coating to resist diverse forms of sulfur corrosion.

11.
Nat Commun ; 11(1): 2989, 2020 Jun 12.
Article in English | MEDLINE | ID: mdl-32533022

ABSTRACT

Excitonic condensate has been long-sought within bulk indirect-gap semiconductors, quantum wells, and 2D material layers, all tried as carrying media. Here, we propose intrinsically stable 2D semiconductor heterostructures with doubly-indirect overlapping bands as optimal platforms for excitonic condensation. After screening hundreds of 2D materials, we identify candidates where spontaneous excitonic condensation mediated by purely electronic interaction should occur, and hetero-pairs Sb2Te2Se/BiTeCl, Hf2N2I2/Zr2N2Cl2, and LiAlTe2/BiTeI emerge promising. Unlike monolayers, where excitonic condensation is hampered by Peierls instability, or other bilayers, where doping by applied voltage is required, rendering them essentially non-equilibrium systems, the chemically-specific heterostructures predicted here are lattice-matched, show no detrimental electronic instability, and display broken type-III gap, thus offering optimal carrier density without any gate voltages, in true-equilibrium. Predicted materials can be used to access different parts of electron-hole phase diagram, including BEC-BCS crossover, enabling tantalizing applications in superfluid transport, Josephson-like tunneling, and dissipationless charge counterflow.

12.
Nano Lett ; 20(5): 3240-3246, 2020 May 13.
Article in English | MEDLINE | ID: mdl-32155086

ABSTRACT

The effect of flexoelectric voltage on the electronic and optical properties of single- and double-wall carbon nanotubes is evaluated by the first-principles calculations. The voltage between the inner channel of curved sp2 carbon nanostructures and their surroundings scales linearly with nanotube wall curvature and can be boosted/reversed by appropriate outer wall functionalization. We predict and verify computationally that in double-wall nanotubes, flexoelectricity causes a straddling to staggered band gap transition. Accurate band structure calculations taking into account quasiparticle corrections and excitonic effects lead to an estimated critical diameter of ∼24 Šfor this transition. Double-wall nanotubes above this diameter have staggered band alignment and could be potentially used for charge separation in photovoltaic devices.

13.
Adv Mater ; 30(45): e1804218, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30198162

ABSTRACT

Composition and phase specific 2D transition metal dichalogenides (2D TMDs) with a controlled electronic and chemical structure are essential for future electronics. While alloying allows bandgap tunability, heterostructure formation creates atomically sharp electronic junctions. Herein, the formation of lateral heterostructures from quaternary 2D TMD alloys, by thermal annealing, is demonstrated. Phase separation is observed through photoluminescence and Raman spectroscopy, and the sharp interface of the lateral heterostructure is examined via scanning transmission electron microscopy. The composition-dependent transformation is caused by existence of miscibility gap in the quaternary alloys. The phase diagram displaying the miscibility gap is obtained from the reciprocal solution model based on density functional theory and verified experimentally. The experiments show direct evidence of composition-driven heterostructure formation in 2D atomic layer systems.

14.
ACS Nano ; 12(11): 10880-10889, 2018 Nov 27.
Article in English | MEDLINE | ID: mdl-30226752

ABSTRACT

Despite being only a few atoms thick, single-layer two-dimensional (2D) materials display strong electron-photon interactions that could be utilized in efficient light modulators on extreme subwavelength scales. In various applications involving light modulation and manipulation, materials with strong optical response at different wavelengths are required. Using qualitative analytical modeling and first-principles calculations, we determine the theoretical limit of the maximum optical response such as absorbance ( A) and reflectance ( R) in 2D materials and also conduct a computational survey to seek out those with best A and R in various frequency ranges, from mid-infrared to deep-ultraviolet. We find that 2D boron has broadband reflectance R > 99% for >100 layers, surpassing conventional thin films of bulk metals such as silver. Moreover, we identify 2D monolayer semiconductors with maximum response, for which we obtain quantitative estimates by calculating quasiparticle energies and accounting for excitonic effects by solving the Bethe-Salpeter equation. We found several monolayer semiconductors with absorbances ≳30% in different optical ranges, which are more than half of the maximum possible value, Alim = 1/2, for a freestanding 2D material. Our study predicts 2D materials which can potentially be used in ultrathin reflectors and absorbers for optoelectronic application in various frequency ranges.

15.
J Phys Chem Lett ; 9(11): 2757-2762, 2018 Jun 07.
Article in English | MEDLINE | ID: mdl-29741094

ABSTRACT

Two-dimensional single-layer boron (borophene) has emerged as a new material with several intriguing properties. Recently, the ß12 polymorph of borophene was grown on Ag(111), and observed to host Dirac fermions. Similar to graphene, ß12 borophene can be described as atom-vacancy pseudoalloy on a closed-packed triangular lattice; however, unlike graphene, the origin of its Dirac fermions  is yet unclear. Here, using first-principles calculations, we probe the origin of Dirac fermions in freestanding and Ag(111)-supported ß12 borophene. The freestanding ß12 sheet hosts two Dirac cones and a topologically nontrivial Dirac nodal line with interesting Dirac-like edge states. On Ag(111), the Dirac cones develop a gap, whereas the topologically protected nodal line remains intact, and its position in the Brillouin zone matches that of the Dirac-like electronic states seen in the experiment. The presence of nontrivial topological states near the Fermi level in borophene makes its electronic properties important for both fundamental and applied research.

16.
ACS Nano ; 12(3): 2498-2505, 2018 03 27.
Article in English | MEDLINE | ID: mdl-29481065

ABSTRACT

A van der Waals (vdW) heterostructure composed of multivalley systems can show excitonic optical responses from interlayer excitons that originate from several valleys in the electronic structure. In this work, we studied photoluminescence (PL) from a vdW heterostructure, WS2/MoS2, deposited on hexagonal boron nitride (hBN) flakes. PL spectra from the fabricated heterostructures observed at room temperature show PL peaks at 1.3-1.7 eV, which are absent in the PL spectra of WS2 or MoS2 monolayers alone. The low-energy PL peaks we observed can be decomposed into three distinct peaks. Through detailed PL measurements and theoretical analysis, including PL imaging, time-resolved PL measurements, and calculation of dielectric function ε(ω) by solving the Bethe-Salpeter equation with G0 W0, we concluded that the three PL peaks originate from direct K-K interlayer excitons, indirect Q-Γ interlayer excitons, and indirect K-Γ interlayer excitons.

17.
Adv Mater ; 29(35)2017 Sep.
Article in English | MEDLINE | ID: mdl-28707411

ABSTRACT

Alloying/doping in 2D material is important due to wide range bandgap tunability. Increasing the number of components would increase the degree of freedom which can provide more flexibility in tuning the bandgap and also reduces the growth temperature. Here, synthesis of quaternary alloys Mox W1-x S2y Se2(1-y) is reported using chemical vapor deposition. The composition of alloys is tuned by changing the growth temperatures. As a result, the bandgap can be tuned which varies from 1.61 to 1.85 eV. The detailed theoretical calculation supports the experimental observation and shows a possibility of wide tunability of bandgap.

18.
Nano Lett ; 16(8): 5032-6, 2016 08 10.
Article in English | MEDLINE | ID: mdl-27414071

ABSTRACT

With the lateral coplanar heterojunctions of two-dimensional monolayer materials turning into reality, the quantitative understanding of their electronic, electrostatic, doping, and scaling properties becomes imperative. In contrast to traditional bulk 3D junctions where carrier equilibrium is reached through local charge redistribution, a highly nonlocalized charge transfer (trailing off as 1/x away from the interface) is present in lateral 2D junctions, increasing the junction size considerably. The depletion width scales as p(-1), while the differential capacitance varies very little with the doping level p. The properties of lateral 2D junctions are further quantified through numerical analysis of realistic materials, with graphene, MoS2, and their hybrid serving as examples. Careful analysis of the built-in potential profile shows strong reduction of Fermi level pinning, suggesting better control of the barrier in 2D metal-semiconductor junctions.

19.
Nano Lett ; 16(4): 2522-6, 2016 Apr 13.
Article in English | MEDLINE | ID: mdl-27003635

ABSTRACT

Two-dimensional boron is expected to exhibit various structural polymorphs, all being metallic. Additionally, its small atomic mass suggests strong electron-phonon coupling, which in turn can enable superconducting behavior. Here we perform first-principles analysis of electronic structure, phonon spectra, and electron-phonon coupling of selected 2D boron polymorphs and show that the most stable structures predicted to feasibly form on a metal substrate should also exhibit intrinsic phonon-mediated superconductivity, with estimated critical temperature in the range of Tc ≈ 10-20 K.

20.
ACS Nano ; 9(10): 9802-9, 2015 Oct 27.
Article in English | MEDLINE | ID: mdl-26394207

ABSTRACT

Intrinsic semimetallicity of graphene and silicene largely limits their applications in functional devices. Mixing carbon and silicon atoms to form two-dimensional (2D) silicon carbide (SixC1-x) sheets is promising to overcome this issue. Using first-principles calculations combined with the cluster expansion method, we perform a comprehensive study on the thermodynamic stability and electronic properties of 2D SixC1-x monolayers with 0 ≤ x ≤ 1. Upon varying the silicon concentration, the 2D SixC1-x presents two distinct structural phases, a homogeneous phase with well dispersed Si (or C) atoms and an in-plane hybrid phase rich in SiC domains. While the in-plane hybrid structure shows uniform semiconducting properties with widely tunable band gap from 0 to 2.87 eV due to quantum confinement effect imposed by the SiC domains, the homogeneous structures can be semiconducting or remain semimetallic depending on a superlattice vector which dictates whether the sublattice symmetry is topologically broken. Moreover, we reveal a universal rule for describing the electronic properties of the homogeneous SixC1-x structures. These findings suggest that the 2D SixC1-x monolayers may present a new "family" of 2D materials, with a rich variety of properties for applications in electronics and optoelectronics.

SELECTION OF CITATIONS
SEARCH DETAIL