Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 13(34): 24038-24052, 2023 Aug 04.
Article in English | MEDLINE | ID: mdl-37577094

ABSTRACT

The development of photocatalysts that can utilize the entire solar spectrum is crucial to achieving efficient solar energy conversion. The utility of the benchmark photocatalyst, TiO2, is limited only to the UV region due to its large bandgap. Extending the light harvesting properties across the entire spectrum is paramount to enhancing solar photocatalytic performance. In this work, we developed low bandgap TiO2/conjugated polymer nanostructures which exhibit full spectrum activity for efficient H2 production. The highly mesoporous structure of the nanostructures together with the photosensitizing properties of the conjugated polymer enabled efficient solar light activity. The mesoporous TiO2 nanostructures calcined at 550 °C exhibited a defect-free anatase crystalline phase with traces of brookite and high surface area, resulting in the best performance in hydrogen production (5.34 mmol g-1 h-1) under sunlight simulation. This value is higher not only in comparison to other TiO2-based catalysts but also to other semiconductor materials reported in the literature. Thus, this work provides an effective strategy for the construction of full spectrum active nanostructured catalysts for enhanced solar photocatalytic hydrogen production.

2.
ACS Appl Mater Interfaces ; 13(14): 16173-16181, 2021 Apr 14.
Article in English | MEDLINE | ID: mdl-33787203

ABSTRACT

Novel photoactive and enzymatically active nanomotors were developed for efficient organic pollutant degradation. The developed preparation route is simple and scalable. Light-absorbing polypyrrole nanoparticles were equipped with a bi-enzyme [glucose oxidase/catalase (GOx/Cat)] system enabling the simultaneous utilization of light and glucose as energy sources for jet-induced nanoparticle movement and active radical production. The GOx utilizes glucose to produce hydrogen peroxide, which is subsequently degraded by Cat, resulting in the generation of active radicals and/or oxygen bubbles that propel the particles. Uneven grafting of GOx/Cat molecules on the nanoparticle surface ensures inhomogeneity of peroxide creation/degradation, providing the nanomotor random propelling. The nanomotors were tested for their ability to degrade chlorophenol, under various experimental conditions, that is, with and without simulated sunlight illumination or glucose addition. In all cases, degradation was accelerated by the presence of the self-propelled nanoparticles or light illumination. Light-induced heating also positively affects enzymatic activity, further accelerating nanomotor diffusion and pollutant degradation. In fact, the chemical and photoactivities of the nanoparticles led to more than 95% removal of chlorophenol in 1 h, without any external stirring. Finally, the quality of the purified water and the extent of pollutant removal were checked using an eco-toxicological assay, with demonstrated significant synergy between glucose pumping and sunlight illumination.


Subject(s)
Polymers/chemistry , Pyrroles/chemistry , Robotics , Sunlight , Water Pollutants, Chemical/chemistry , Glucose/chemistry , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Spectrophotometry, Ultraviolet/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...