Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters










Publication year range
1.
Heart Rhythm ; 20(11): 1548-1557, 2023 11.
Article in English | MEDLINE | ID: mdl-37543305

ABSTRACT

BACKGROUND: Decreased peak sodium current (INa) and increased late sodium current (INa,L), through the cardiac sodium channel NaV1.5 encoded by SCN5A, cause arrhythmias. Many NaV1.5 posttranslational modifications have been reported. A recent report concluded that acute hypoxia increases INa,L by increasing a small ubiquitin-like modifier (SUMOylation) at K442-NaV1.5. OBJECTIVE: The purpose of this study was to determine whether and by what mechanisms SUMOylation alters INa, INa,L, and cardiac electrophysiology. METHODS: SUMOylation of NaV1.5 was detected by immunoprecipitation and immunoblotting. INa was measured by patch clamp with/without SUMO1 overexpression in HEK293 cells expressing wild-type (WT) or K442R-NaV1.5 and in neonatal rat cardiac myocytes (NRCMs). SUMOylation effects were studied in vivo by electrocardiograms and ambulatory telemetry using Scn5a heterozygous knockout (SCN5A+/-) mice and the de-SUMOylating protein SENP2 (AAV9-SENP2), AAV9-SUMO1, or the SUMOylation inhibitor anacardic acid. NaV1.5 trafficking was detected by immunofluorescence. RESULTS: NaV1.5 was SUMOylated in HEK293 cells, NRCMs, and human heart tissue. HyperSUMOylation at NaV1.5-K442 increased INa in NRCMs and in HEK cells overexpressing WT but not K442R-Nav1.5. SUMOylation did not alter other channel properties including INa,L. AAV9-SENP2 or anacardic acid decreased INa, prolonged QRS duration, and produced heart block and arrhythmias in SCN5A+/- mice, whereas AAV9-SUMO1 increased INa and shortened QRS duration. SUMO1 overexpression enhanced membrane localization of NaV1.5. CONCLUSION: SUMOylation of K442-Nav1.5 increases peak INa without changing INa,L, at least in part by altering membrane abundance. Our findings do not support SUMOylation as a mechanism for changes in INa,L. Nav1.5 SUMOylation may modify arrhythmic risk in disease states and represents a potential target for pharmacologic manipulation.


Subject(s)
Myocytes, Cardiac , Sumoylation , Animals , Humans , Mice , Rats , Arrhythmias, Cardiac/genetics , Arrhythmias, Cardiac/metabolism , HEK293 Cells , Myocytes, Cardiac/metabolism , NAV1.5 Voltage-Gated Sodium Channel/genetics , NAV1.5 Voltage-Gated Sodium Channel/metabolism , Sodium/metabolism , Sodium Channels/metabolism
2.
Physiol Rep ; 10(17): e15388, 2022 09.
Article in English | MEDLINE | ID: mdl-36073057

ABSTRACT

Type 2 diabetes and obesity are associated with increased risk of cardiovascular disease, including heart failure. A hallmark of these dysmetabolic states is hyperinsulinemia and decreased cardiac reserve. However, the direct effects of hyperinsulinemia on myocardial function are incompletely understood. In this study, using invasive hemodynamics in mice, we studied the effects of short-term euglycemic hyperinsulinemia on basal myocardial function and subsequent responses of the myocardium to ß-adrenergic stimulation. We found that cardiac function as measured by left ventricular (LV) invasive hemodynamics is not influenced by acute exposure to hyperinsulinemia, induced by an intravenous insulin injection with concurrent inotropic stimulation induced by ß-adrenergic stimulation secondary to isoproterenol administration. When animals were exposed to 120-min of hyperinsulinemia by euglycemic-hyperinsulinemic clamps, there was a significant decrease in LV developed pressure, perhaps secondary to the systemic vasodilatory effects of insulin. Despite the baseline reduction, the contractile response to ß-adrenergic stimulation remained intact in animals subject to euglycemic hyperinsulinemic clamps. ß-adrenergic activation of phospholamban phosphorylation was not impaired by hyperinsulinemia. These results suggest that short-term hyperinsulinemia does not impair cardiac inotropic response to ß-adrenergic stimulation in vivo.


Subject(s)
Diabetes Mellitus, Type 2 , Hyperinsulinism , Adrenergic Agents/pharmacology , Animals , Insulin/pharmacology , Male , Mice , Myocardial Contraction/physiology , Myocardium
3.
Am J Physiol Heart Circ Physiol ; 321(5): H850-H864, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34477461

ABSTRACT

Molecular mechanisms underlying cardiac dysfunction and subsequent heart failure in diabetic cardiomyopathy are incompletely understood. Initially we intended to test the role of G protein-coupled receptor kinase 2 (GRK2), a potential mediator of cardiac dysfunction in diabetic cardiomyopathy, but found that control animals on HFD did not develop cardiomyopathy. Cardiac function was preserved in both wild-type and GRK2 knockout animals fed high-fat diet as indicated by preserved left ventricular ejection fraction (LVEF) although heart mass was increased. The absence of cardiac dysfunction led us to rigorously evaluate the utility of diet-induced obesity to model diabetic cardiomyopathy in mice. Using pure C57BL/6J animals and various diets formulated with different sources of fat-lard (32% saturated fat, 68% unsaturated fat) or hydrogenated coconut oil (95% saturated fat), we consistently observed left ventricular hypertrophy, preserved LVEF, and preserved contractility measured by invasive hemodynamics in animals fed high-fat diet. Gene expression patterns that characterize pathological hypertrophy were not induced, but a modest induction of various collagen isoforms and matrix metalloproteinases was observed in heart with high-fat diet feeding. PPARα-target genes that enhance lipid utilization such as Pdk4, CD36, AcadL, and Cpt1b were induced, but mitochondrial energetics was not impaired. These results suggest that although long-term fat feeding in mice induces cardiac hypertrophy and increases cardiac fatty acid metabolism, it may not be sufficient to activate pathological hypertrophic mechanisms that impair cardiac function or induce cardiac fibrosis. Thus, additional factors that are currently not understood may contribute to the cardiac abnormalities previously reported by many groups.NEW & NOTEWORTHY Dietary fat overload (DFO) is widely used to model diabetic cardiomyopathy but the utility of this model is controversial. We comprehensively characterized cardiac contractile and mitochondrial function in C57BL6/J mice fed with lard-based or saturated fat-enriched diets initiated at two ages. Despite cardiac hypertrophy, contractile and mitochondrial function is preserved, and molecular adaptations likely limit lipotoxicity. The resilience of these hearts to DFO underscores the need to develop robust alternative models of diabetic cardiomyopathy.


Subject(s)
Diabetic Cardiomyopathies/etiology , Diet, High-Fat , Hypertrophy, Left Ventricular/etiology , Obesity/complications , Stroke Volume , Ventricular Dysfunction, Left/etiology , Ventricular Function, Left , Age Factors , Animals , Diabetic Cardiomyopathies/enzymology , Diabetic Cardiomyopathies/pathology , Diabetic Cardiomyopathies/physiopathology , Disease Models, Animal , Energy Metabolism , Female , Fibrosis , G-Protein-Coupled Receptor Kinase 2/genetics , G-Protein-Coupled Receptor Kinase 2/metabolism , Hypertrophy, Left Ventricular/enzymology , Hypertrophy, Left Ventricular/pathology , Hypertrophy, Left Ventricular/physiopathology , Male , Mice, Inbred C57BL , Mice, Knockout , Mitochondria, Heart/enzymology , Mitochondria, Heart/pathology , Myocardium/enzymology , Myocardium/pathology , Ventricular Dysfunction, Left/enzymology , Ventricular Dysfunction, Left/pathology , Ventricular Dysfunction, Left/physiopathology , Ventricular Remodeling
5.
Nat Metab ; 2(11): 1248-1264, 2020 11.
Article in English | MEDLINE | ID: mdl-33106689

ABSTRACT

In addition to fatty acids, glucose and lactate are important myocardial substrates under physiologic and stress conditions. They are metabolized to pyruvate, which enters mitochondria via the mitochondrial pyruvate carrier (MPC) for citric acid cycle metabolism. In the present study, we show that MPC-mediated mitochondrial pyruvate utilization is essential for the partitioning of glucose-derived cytosolic metabolic intermediates, which modulate myocardial stress adaptation. Mice with cardiomyocyte-restricted deletion of subunit 1 of MPC (cMPC1-/-) developed age-dependent pathologic cardiac hypertrophy, transitioning to a dilated cardiomyopathy and premature death. Hypertrophied hearts accumulated lactate, pyruvate and glycogen, and displayed increased protein O-linked N-acetylglucosamine, which was prevented by increasing availability of non-glucose substrates in vivo by a ketogenic diet (KD) or a high-fat diet, which reversed the structural, metabolic and functional remodelling of non-stressed cMPC1-/- hearts. Although concurrent short-term KDs did not rescue cMPC1-/- hearts from rapid decompensation and early mortality after pressure overload, 3 weeks of a KD before transverse aortic constriction was sufficient to rescue this phenotype. Together, our results highlight the centrality of pyruvate metabolism to myocardial metabolism and function.


Subject(s)
Adaptation, Physiological/physiology , Anion Transport Proteins/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Myocardium/metabolism , Stress, Physiological/physiology , Adaptation, Physiological/genetics , Animals , Anion Transport Proteins/genetics , Cardiomegaly/diagnostic imaging , Cardiomegaly/genetics , Cardiomegaly/metabolism , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/metabolism , Constriction, Pathologic , Cytosol/metabolism , Diet, High-Fat , Diet, Ketogenic , Echocardiography , In Vitro Techniques , Mice , Mice, Knockout , Mitochondria, Heart/metabolism , Mitochondrial Membrane Transport Proteins/genetics , Myocytes, Cardiac/metabolism , Pyruvic Acid/metabolism , Stress, Physiological/genetics
6.
Cephalalgia ; 40(14): 1585-1604, 2020 12.
Article in English | MEDLINE | ID: mdl-32811179

ABSTRACT

BACKGROUND: Calcitonin gene-related peptide is recognized as a key player in migraine, yet the mechanisms and sites of calcitonin gene-related peptide action remain unknown. The efficacy of calcitonin gene-related peptide-blocking antibodies as preventative migraine drugs supports a peripheral site of action, such as the trigeminovasculature. Given the apparent disconnect between the importance of vasodilatory peptides in migraine and the prevailing opinion that vasodilation is an epiphenomenon, the goal of this study was to test whether vasodilation plays a role in calcitonin gene-related peptide-induced light aversive behavior in mice. METHODS: Systemic mean arterial pressure and light aversive behavior were measured after intraperitoneal administration of calcitonin gene-related peptide and vasoactive intestinal peptide in wild-type CD1 mice. The functional significance of vasodilation was tested by co-administration of a vasoconstrictor (phenylephrine, endothelin-1, or caffeine) with calcitonin gene-related peptide to normalize blood pressure during the light aversion assay. RESULTS: Both calcitonin gene-related peptide and vasoactive intestinal peptide induced light aversion that was associated with their effect on mean arterial pressure. Notably, vasoactive intestinal peptide caused relatively transient vasodilation and light aversion. Calcitonin gene-related peptide-induced light aversion was still observed even with normalized blood pressure. However, two of the agents, endothelin-1 and caffeine, did reduce the magnitude of light aversion. CONCLUSION: We propose that perivascular calcitonin gene-related peptide causes light-aversive behavior in mice by both vasomotor and non-vasomotor mechanisms.


Subject(s)
Migraine Disorders , Photophobia , Animals , Caffeine , Calcitonin Gene-Related Peptide , Endothelin-1/toxicity , Mice , Photophobia/chemically induced , Vasoactive Intestinal Peptide
7.
JCI Insight ; 5(6)2020 03 26.
Article in English | MEDLINE | ID: mdl-32213702

ABSTRACT

Pressure overload (PO) cardiac hypertrophy and heart failure are associated with generalized insulin resistance and hyperinsulinemia, which may exacerbate left ventricular (LV) remodeling. While PO activates insulin receptor tyrosine kinase activity that is transduced by insulin receptor substrate 1 (IRS1), the present study tested the hypothesis that IRS1 and IRS2 have divergent effects on PO-induced LV remodeling. We therefore subjected mice with cardiomyocyte-restricted deficiency of IRS1 (CIRS1KO) or IRS2 (CIRS2KO) to PO induced by transverse aortic constriction (TAC). In WT mice, TAC-induced LV hypertrophy was associated with hyperactivation of IRS1 and Akt1, but not IRS2 and Akt2. CIRS1KO hearts were resistant to cardiac hypertrophy and heart failure in concert with attenuated Akt1 activation. In contrast, CIRS2KO hearts following TAC developed more severe LV dysfunction than WT controls, and this was prevented by haploinsufficiency of Akt1. Failing human hearts exhibited isoform-specific IRS1 and Akt1 activation, while IRS2 and Akt2 activation were unchanged. Kinomic profiling identified IRS1 as a potential regulator of cardioprotective protein kinase G-mediated signaling. In addition, gene expression profiling revealed that IRS1 signaling may promote a proinflammatory response following PO. Together, these data identify IRS1 and Akt1 as critical signaling nodes that mediate LV remodeling in both mice and humans.


Subject(s)
Insulin Receptor Substrate Proteins/metabolism , Insulin/metabolism , Ventricular Remodeling/physiology , Animals , Cardiomegaly/complications , Humans , Hyperinsulinism/complications , Insulin Resistance/physiology , Mice , Mice, Knockout , Proto-Oncogene Proteins c-akt/metabolism
8.
Cardiovasc Res ; 115(11): 1646-1658, 2019 09 01.
Article in English | MEDLINE | ID: mdl-30715251

ABSTRACT

AIMS: We previously reported that sodium-dependent glucose cotransporter 1 (SGLT1) is highly expressed in cardiomyocytes and is further up-regulated in ischaemia. This study aimed to determine the mechanisms by which SGLT1 contributes to ischaemia/reperfusion (I/R) injury. METHODS AND RESULTS: Mice with cardiomyocyte-specific knockdown of SGLT1 (TGSGLT1-DOWN) and wild-type controls were studied. In vivo, the left anterior descending coronary artery was ligated for 30 min and reperfused for 48 h. Ex vivo, isolated perfused hearts were exposed to 20 min no-flow and up to 2 h reperfusion. In vitro, HL-1 cells and isolated adult murine ventricular cardiomyocytes were exposed to 1 h hypoxia and 24 h reoxygenation (H/R). We found that TGSGLT1-DOWN hearts were protected from I/R injury in vivo and ex vivo, with decreased infarct size, necrosis, dysfunction, and oxidative stress. 5'-AMP-activated protein kinase (AMPK) activation increased SGLT1 expression, which was abolished by extracellular signal-related kinase (ERK) inhibition. Co-immunoprecipitation studies showed that ERK, but not AMPK, interacts directly with SGLT1. AMPK activation increased binding of the hepatocyte nuclear factor 1 and specificity protein 1 transcription factors to the SGLT1 gene, and HuR to SGLT1 mRNA. In cells, up-regulation of SGLT1 during H/R was abrogated by AMPK inhibition. Co-immunoprecipitation studies showed that SGLT1 interacts with epidermal growth factor receptor (EGFR), and EGFR interacts with protein kinase C (PKC). SGLT1 overexpression activated PKC and NADPH oxidase 2 (Nox2), which was attenuated by PKC inhibition, EGFR inhibition, and/or disruption of the interaction between EGFR and SGLT1. CONCLUSION: During ischaemia, AMPK up-regulates SGLT1 through ERK, and SGLT1 interacts with EGFR, which in turn increases PKC and Nox2 activity and oxidative stress. SGLT1 may represent a novel therapeutic target for mitigating I/R injury.


Subject(s)
Myocardial Infarction/metabolism , Myocardial Reperfusion Injury/metabolism , Myocytes, Cardiac/metabolism , Sodium-Glucose Transporter 1/metabolism , AMP-Activated Protein Kinases/metabolism , Animals , Cell Line , Disease Models, Animal , ELAV-Like Protein 1/metabolism , ErbB Receptors/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Female , Hepatocyte Nuclear Factor 1/metabolism , Male , Mice, Knockout , Myocardial Infarction/genetics , Myocardial Infarction/pathology , Myocardial Infarction/physiopathology , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/physiopathology , Myocytes, Cardiac/pathology , NADPH Oxidase 2/metabolism , NADPH Oxidases/metabolism , Necrosis , Oxidative Stress , Protein Kinase C/metabolism , Signal Transduction , Sodium-Glucose Transporter 1/deficiency , Sodium-Glucose Transporter 1/genetics
9.
JACC Basic Transl Sci ; 3(4): 503-517, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30175274

ABSTRACT

Heart failure remains a major cause of morbidity and mortality in developed countries. There is still a strong need to devise new mechanism-based treatments for heart failure. Numerous studies have suggested the importance of the Ca2+-dependent protease calpain in cardiac physiology and pathology. However, no drugs are currently under development or testing in human patients to target calpain for heart failure treatment. Herein the data demonstrate that inhibition of calpain activity protects against deleterious ultrastructural remodeling and cardiac dysfunction in multiple rodent models of heart failure, providing compelling evidence that calpain inhibition is a promising therapeutic strategy for heart failure treatment.

10.
J Mol Cell Cardiol ; 115: 104-114, 2018 02.
Article in English | MEDLINE | ID: mdl-29307535

ABSTRACT

AIMS: Protein kinase C (PKC) isozymes contribute to the development of heart failure through dysregulation of Ca2+ handling properties and disruption of contractile function in cardiomyocytes. However, the mechanisms by which PKC activation leads to Ca2+ dysfunction are incompletely understood. METHODS AND RESULTS: Shortly upon ventricular pressure overload in mice, we detected transient PKC activation that was associated with pulsed actin cytoskeletal rearrangement. In cultured cardiomyocytes, transient activation of PKC promoted long-term deleterious effects on the integrity of the transverse (T)- tubule system, resulting in a significant decrease in the amplitude and increase in the rising kinetics of Ca2+ transients. Treatment with a PKCα/ß inhibitor restored the synchronization of Ca2+ transients and maintained T-tubule integrity in cultured cardiomyocytes. Supporting these data, PKCα/ß inhibition protected against T-tubule remodeling and cardiac dysfunction in a mouse model of pressure overload-induced heart failure. Mechanistically, transient activation of PKC resulted in biphasic actin cytoskeletal rearrangement, consistent with in vivo observations in the pressure overloaded mouse model. Transient inhibition of actin polymerization or depolymerization resulted in severe T-tubule damage, recapitulating the T-tubule damage induced by PKC activation. Moreover, inhibition of stretch activated channels (SAC) protected against T-tubule remodeling and E-C coupling dysfunction induced by transient PKC activation and actin cytoskeletal rearrangement. CONCLUSIONS: These data identify a key mechanistic link between transient PKC activation and long-term Ca2+ handling defects through PKC-induced actin cytoskeletal rearrangement and resultant T-tubule damage.


Subject(s)
Actin Cytoskeleton/metabolism , Calcium/metabolism , Myocytes, Cardiac/metabolism , Protein Kinase C/metabolism , Sarcolemma/metabolism , Actin Cytoskeleton/drug effects , Animals , Enzyme Activation/drug effects , Mice, Inbred C57BL , Myocytes, Cardiac/drug effects , Potassium Channels/metabolism , Pressure , Protein Kinase C/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Sarcolemma/drug effects
11.
PLoS One ; 12(10): e0186311, 2017.
Article in English | MEDLINE | ID: mdl-29059213

ABSTRACT

The multifunctional Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a serine/threonine kinase important in transducing intracellular Ca2+ signals. While in vitro data regarding the role of CaMKII in the regulation of endothelial nitric oxide synthase (eNOS) are contradictory, its role in endothelial function in vivo remains unknown. Using two novel transgenic models to express CaMKII inhibitor peptides selectively in endothelium, we examined the effect of CaMKII on eNOS activation, NO production, vasomotor tone and blood pressure. Under baseline conditions, CaMKII activation was low in the aortic wall. Consistently, systolic and diastolic blood pressure, heart rate and plasma NO levels were unaltered by endothelial CaMKII inhibition. Moreover, endothelial CaMKII inhibition had no significant effect on NO-dependent vasodilation. These results were confirmed in studies of aortic rings transduced with adenovirus expressing a CaMKII inhibitor peptide. In cultured endothelial cells, bradykinin treatment produced the anticipated rapid influx of Ca2+ and transient CaMKII and eNOS activation, whereas CaMKII inhibition blocked eNOS phosphorylation on Ser-1179 and dephosphorylation at Thr-497. Ca2+/CaM binding to eNOS and resultant NO production in vitro were decreased under CaMKII inhibition. Our results demonstrate that CaMKII plays an important role in transient bradykinin-driven eNOS activation in vitro, but does not regulate NO production, vasorelaxation or blood pressure in vivo under baseline conditions.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Nitric Oxide Synthase Type III/metabolism , Nitric Oxide/metabolism , Animals , Cell Line , Humans , Phosphorylation
12.
J Mol Cell Cardiol ; 112: 123-130, 2017 11.
Article in English | MEDLINE | ID: mdl-28822805

ABSTRACT

The cardiac transverse (T)-tubule membrane system is the safeguard for cardiac function and undergoes dramatic remodeling in response to cardiac stress. However, the mechanism by which cardiomyocytes repair damaged T-tubule network remains unclear. In the present study, we tested the hypothesis that MG53, a muscle-specific membrane repair protein, antagonizes T-tubule damage to protect against maladaptive remodeling and thereby loss of excitation-contraction coupling and cardiac function. Using MG53-knockout (MG53-KO) mice, we first established that deficiency of MG53 had no impact on maturation of the T-tubule network in developing hearts. Additionally, MG53 ablation did not influence T-tubule integrity in unstressed adult hearts as late as 10months of age. Following left ventricular pressure overload-induced cardiac stress, MG53 protein levels were increased by approximately three-fold in wild-type mice, indicating that pathological stress induces a significant upregulation of MG53. MG53-deficient mice had worsened T-tubule disruption and pronounced dysregulation of Ca2+ handling properties, including decreased Ca2+ transient amplitude and prolonged time to peak and decay. Moreover, MG53 deficiency exacerbated cardiac hypertrophy and dysfunction and decreased survival following cardiac stress. Our data suggest MG53 is not required for T-tubule development and maintenance in normal physiology. However, MG53 is essential to preserve T-tubule integrity and thereby Ca2+ handling properties and cardiac function under pathological cardiac stress.


Subject(s)
Carrier Proteins/metabolism , Myocardium/metabolism , Myocardium/pathology , Sarcolemma/metabolism , Animals , Calcium Signaling , Down-Regulation , Excitation Contraction Coupling , Heart/embryology , Male , Membrane Proteins , Mice, Inbred C57BL , Mice, Knockout , Myocytes, Cardiac/metabolism , Sarcolemma/ultrastructure , Sodium-Calcium Exchanger/metabolism
13.
Ann Thorac Surg ; 104(2): 657-665, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28347539

ABSTRACT

BACKGROUND: Marfan syndrome (MFS) represents a genetic disorder with variable phenotypic expression. The main cardiovascular sequelae of MFS include aortic aneurysm/dissection and cardiomyopathy. Although significant advances in the understanding of transforming growth factor beta signaling have led to promising therapeutic targets for the treatment of aortopathy, clinical studies have tempered this optimism. In particular, these studies suggest additional signaling pathways that play a significant role in disease progression. To date, studies aimed at elucidating molecular mechanisms involved in MFS-induced disease progression have been hampered by the lack of an accelerated disease model. METHODS: Wild-type B6.129 mice and MFS Fbn1C1039G/+ mice underwent subcutaneous, cervical osmotic minipump installation with sodium chloride (wild-type mice, n = 39; MFS mice, n = 12) or angiotensin II, 4.5 mg/kg daily (wild-type mice, n = 11; MFS mice; n = 35) for as long as 28 days. Hemodynamic measurements were obtained throughout the experiment. Aortas and hearts were analyzed by transthoracic echocardiography and histopathology study. RESULTS: This accelerated murine MFS model replicates increased mortality from MFS-related maladies (20.0%, 39.3%, and 52.9% at 10, 14, and 28 days, respectively). Aortic diameters in accelerated MFS mice were significantly enlarged at 10 days after minipump implantation and correlated with a higher degree of elastin fragmentation. Accelerated MFS mice also demonstrated dilated cardiomyopathy at 14 days, even without aortic insufficiency, suggesting an intrinsic etiology. CONCLUSIONS: A novel in vivo model consisting of subcutaneously delivered angiotensin II in MFS mice reproducibly causes accelerated aortic aneurysm formation and cardiomyopathy. This model allows for better investigation of MFS sequelae by rapid experimental processes.


Subject(s)
Aortic Aneurysm, Thoracic/etiology , Cardiomyopathies/etiology , Heart Ventricles/diagnostic imaging , Marfan Syndrome/complications , Animals , Aortic Aneurysm, Thoracic/diagnosis , Cardiomyopathies/diagnosis , Disease Models, Animal , Disease Progression , Echocardiography , Marfan Syndrome/diagnosis , Marfan Syndrome/genetics , Mice , Mice, Mutant Strains , Signal Transduction , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism
14.
Nat Med ; 23(3): 361-367, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28191886

ABSTRACT

The voltage-gated cardiac Na+ channel (Nav1.5), encoded by the SCN5A gene, conducts the inward depolarizing cardiac Na+ current (INa) and is vital for normal cardiac electrical activity. Inherited loss-of-function mutations in SCN5A lead to defects in the generation and conduction of the cardiac electrical impulse and are associated with various arrhythmia phenotypes. Here we show that sirtuin 1 deacetylase (Sirt1) deacetylates Nav1.5 at lysine 1479 (K1479) and stimulates INa via lysine-deacetylation-mediated trafficking of Nav1.5 to the plasma membrane. Cardiac Sirt1 deficiency in mice induces hyperacetylation of K1479 in Nav1.5, decreases expression of Nav1.5 on the cardiomyocyte membrane, reduces INa and leads to cardiac conduction abnormalities and premature death owing to arrhythmia. The arrhythmic phenotype of cardiac-Sirt1-deficient mice recapitulated human cardiac arrhythmias resulting from loss of function of Nav1.5. Increased Sirt1 activity or expression results in decreased lysine acetylation of Nav1.5, which promotes the trafficking of Nav1.5 to the plasma membrane and stimulation of INa. As compared to wild-type Nav1.5, Nav1.5 with K1479 mutated to a nonacetylatable residue increases peak INa and is not regulated by Sirt1, whereas Nav1.5 with K1479 mutated to mimic acetylation decreases INa. Nav1.5 is hyperacetylated on K1479 in the hearts of patients with cardiomyopathy and clinical conduction disease. Thus, Sirt1, by deacetylating Nav1.5, plays an essential part in the regulation of INa and cardiac electrical activity.


Subject(s)
Action Potentials , Arrhythmias, Cardiac/genetics , Cardiomyopathies/metabolism , Membrane Potentials , Myocardium/metabolism , NAV1.5 Voltage-Gated Sodium Channel/metabolism , Sirtuin 1/genetics , Acetylation , Animals , Echocardiography , Electrocardiography , HEK293 Cells , Heart/diagnostic imaging , Heart/physiopathology , Humans , Immunoblotting , Immunoprecipitation , Mass Spectrometry , Mice , Mice, Knockout , Myocytes, Cardiac , Patch-Clamp Techniques , Rats , Sirtuin 1/metabolism
15.
Acta Pharmacol Sin ; 37(4): 473-82, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26972492

ABSTRACT

AIM: Sildenafil, a phosphodiesterase 5 (PDE5) inhibitor, has been shown to exert beneficial effects in heart failure. The purpose of this study was to test whether sildenafil suppressed transverse-tubule (T-tubule) remodeling in left ventricular (LV) failure and thereby providing the therapeutic benefits. METHODS: A pressure overload-induced murine heart failure model was established in mice by thoracic aortic banding (TAB). One day after TAB, the mice received sildenafil (100 mg·kg(-1)·d(-1), sc) or saline for 5 weeks. At the end of treatment, echocardiography was used to examine LV function. Then the intact hearts were dissected out and placed in Langendorff-perfusion chamber for in situ confocal imaging of T-tubule ultrastructure from epicardial myocytes. RESULTS: TAB surgery resulted in heart failure accompanied by remarkable T-tubule remodeling. Sildenafil treatment significantly attenuated TAB-induced cardiac hypertrophy and congestive heart failure, improved LV contractile function, and preserved T-tubule integrity in LV cardiomyocytes. But sildenafil treatment did not significantly affect the chamber dilation. The integrity of LV T-tubule structure was correlated with cardiac hypertrophy (R(2)=0.74, P<0.01) and global LV function (R(2)=0.47, P<0.01). CONCLUSION: Sildenafil effectively ameliorates LV T-tubule remodeling in TAB mice, revealing a novel mechanism underlying the therapeutic benefits of sildenafil in heart failure.


Subject(s)
Heart Failure/drug therapy , Phosphodiesterase 5 Inhibitors/therapeutic use , Sildenafil Citrate/therapeutic use , Ventricular Remodeling/drug effects , Animals , Cardiomegaly/drug therapy , Cardiomegaly/pathology , Heart Failure/pathology , Heart Failure/physiopathology , Male , Mice, Inbred C57BL , Ventricular Function, Left/drug effects
16.
J Physiol ; 593(20): 4575-87, 2015 Oct 15.
Article in English | MEDLINE | ID: mdl-26314284

ABSTRACT

Heart failure is associated with diminished exercise capacity, which is driven, in part, by alterations in exercise-induced autonomic reflexes triggered by skeletal muscle sensory neurons (afferents). These overactive reflexes may also contribute to the chronic state of sympathetic excitation, which is a major contributor to the morbidity and mortality of heart failure. Acid-sensing ion channels (ASICs) are highly expressed in muscle afferents where they sense metabolic changes associated with ischaemia and exercise, and contribute to the metabolic component of these reflexes. Therefore, we tested if ASICs within muscle afferents are altered in heart failure. We used whole-cell patch clamp to study the electrophysiological properties of acid-evoked currents in isolated, labelled muscle afferent neurons from control and heart failure (induced by myocardial infarction) mice. We found that the percentage of muscle afferents that displayed ASIC-like currents, the current amplitudes, and the pH dose-response relationships were not altered in mice with heart failure. On the other hand, the biophysical properties of ASIC-like currents were significantly different in a subpopulation of cells (40%) from heart failure mice. This population displayed diminished pH sensitivity, altered desensitization kinetics, and very fast recovery from desensitization. These unique properties define these channels within this subpopulation of muscle afferents as being heteromeric channels composed of ASIC2a and -3 subunits. Heart failure induced a shift in the subunit composition of ASICs within muscle afferents, which significantly altered their pH sensing characteristics. These results might, in part, contribute to the changes in exercise-mediated reflexes that are associated with heart failure.


Subject(s)
Acid Sensing Ion Channels/physiology , Heart Failure/physiopathology , Muscle, Skeletal/physiology , Sensory Receptor Cells/physiology , Animals , Ganglia, Spinal/physiology , In Vitro Techniques , Mice, Inbred C57BL , Muscle, Skeletal/innervation , Physical Conditioning, Animal
17.
Proc Natl Acad Sci U S A ; 112(29): 9129-34, 2015 Jul 21.
Article in English | MEDLINE | ID: mdl-26153425

ABSTRACT

Myocardial mitochondrial Ca(2+) entry enables physiological stress responses but in excess promotes injury and death. However, tissue-specific in vivo systems for testing the role of mitochondrial Ca(2+) are lacking. We developed a mouse model with myocardial delimited transgenic expression of a dominant negative (DN) form of the mitochondrial Ca(2+) uniporter (MCU). DN-MCU mice lack MCU-mediated mitochondrial Ca(2+) entry in myocardium, but, surprisingly, isolated perfused hearts exhibited higher O2 consumption rates (OCR) and impaired pacing induced mechanical performance compared with wild-type (WT) littermate controls. In contrast, OCR in DN-MCU-permeabilized myocardial fibers or isolated mitochondria in low Ca(2+) were not increased compared with WT, suggesting that DN-MCU expression increased OCR by enhanced energetic demands related to extramitochondrial Ca(2+) homeostasis. Consistent with this, we found that DN-MCU ventricular cardiomyocytes exhibited elevated cytoplasmic [Ca(2+)] that was partially reversed by ATP dialysis, suggesting that metabolic defects arising from loss of MCU function impaired physiological intracellular Ca(2+) homeostasis. Mitochondrial Ca(2+) overload is thought to dissipate the inner mitochondrial membrane potential (ΔΨm) and enhance formation of reactive oxygen species (ROS) as a consequence of ischemia-reperfusion injury. Our data show that DN-MCU hearts had preserved ΔΨm and reduced ROS during ischemia reperfusion but were not protected from myocardial death compared with WT. Taken together, our findings show that chronic myocardial MCU inhibition leads to previously unanticipated compensatory changes that affect cytoplasmic Ca(2+) homeostasis, reprogram transcription, increase OCR, reduce performance, and prevent anticipated therapeutic responses to ischemia-reperfusion injury.


Subject(s)
Adaptation, Physiological , Calcium Channels/metabolism , Heart/physiopathology , Mitochondria, Heart/metabolism , Stress, Physiological , Animals , Blood Pressure , Calcium/metabolism , Cardiac Pacing, Artificial , Cellular Reprogramming , Cytosol/drug effects , Cytosol/metabolism , Diastole , Electrocardiography , Genes, Dominant , Glucose/metabolism , Heart Ventricles/pathology , Heart Ventricles/physiopathology , Mice , Mitochondria, Heart/drug effects , Myocardial Reperfusion , Myocardium/metabolism , Myocardium/pathology , Oxygen Consumption , Prostaglandin-Endoperoxide Synthases/metabolism , Sarcoplasmic Reticulum/metabolism , Transcription, Genetic
18.
J Am Heart Assoc ; 4(6): e001949, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-26077587

ABSTRACT

BACKGROUND: Multifunctional calcium/calmodulin-dependent kinase II (CaMKII) is activated by angiotensin II (Ang II) in cultured vascular smooth muscle cells (VSMCs), but its function in experimental hypertension has not been explored. The aim of this study was to determine the impact of CaMKII inhibition selectively in VSMCs on Ang II hypertension. METHODS AND RESULTS: Transgenic expression of a CaMKII peptide inhibitor in VSMCs (TG SM-CaMKIIN model) reduced the blood pressure response to chronic Ang II infusion. The aortic depressor nerve activity was reset in hypertensive versus normotensive wild-type animals but not in TG SM-CaMKIIN mice, suggesting that changes in baroreceptor activity account for the blood pressure difference between genotypes. Accordingly, aortic pulse wave velocity, a measure of arterial wall stiffness and a determinant of baroreceptor activity, increased in hypertensive versus normotensive wild-type animals but did not change in TG SM-CaMKIIN mice. Moreover, examination of blood pressure and heart rate under ganglionic blockade revealed that VSMC CaMKII inhibition abolished the augmented efferent sympathetic outflow and renal and splanchnic nerve activity in Ang II hypertension. Consequently, we hypothesized that VSMC CaMKII controls baroreceptor activity by modifying arterial wall remodeling in Ang II hypertension. Gene expression analysis in aortas from normotensive and Ang II-infused mice revealed that TG SM-CaMKIIN aortas were protected from Ang II-induced upregulation of genes that control extracellular matrix production, including collagen. VSMC CaMKII inhibition also strongly altered the expression of muscle contractile genes under Ang II. CONCLUSIONS: CaMKII in VSMCs regulates blood pressure under Ang II hypertension by controlling structural gene expression, wall stiffness, and baroreceptor activity.


Subject(s)
Angiotensin II/pharmacology , Antihypertensive Agents/pharmacology , Aorta/drug effects , Calcium-Calmodulin-Dependent Protein Kinase Type 2/antagonists & inhibitors , Hypertension/drug therapy , Muscle, Smooth, Vascular/drug effects , Pressoreceptors/drug effects , Vascular Remodeling/drug effects , Animals , Aorta/physiology , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/physiology , Echocardiography , Hypertension/chemically induced , Mice , Mice, Inbred C57BL , Mice, Transgenic , Muscle, Smooth, Vascular/physiopathology , Norepinephrine/blood , Oligonucleotide Array Sequence Analysis , Pressoreceptors/physiology , Vascular Remodeling/physiology
19.
J Biol Chem ; 290(29): 17946-17955, 2015 Jul 17.
Article in English | MEDLINE | ID: mdl-26063807

ABSTRACT

Junctophilin-2 (JP2), a membrane-binding protein that provides a structural bridge between the plasmalemma and sarcoplasmic reticulum, is essential for precise Ca(2+)-induced Ca(2+) release during excitation-contraction coupling in cardiomyocytes. In animal and human failing hearts, expression of JP2 is decreased markedly, but the molecular mechanisms underlying JP2 down-regulation remain incompletely defined. In mouse hearts, ischemia/reperfusion injury resulted in acute JP2 down-regulation, which was attenuated by pretreatment with the calpain inhibitor MDL-28170 or by transgenic overexpression of calpastatin, an endogenous calpain inhibitor. Using a combination of computational analysis to predict calpain cleavage sites and in vitro calpain proteolysis reactions, we identified four putative calpain cleavage sites within JP2 with three N-terminal and one C-terminal cleavage sites. Mutagenesis defined the C-terminal region of JP2 as the predominant calpain cleavage site. Exogenous expression of putative JP2 cleavage fragments was not sufficient to rescue Ca(2+) handling in JP2-deficient cardiomyocytes, indicating that cleaved JP2 is non-functional for normal Ca(2+)-induced Ca(2+) release. These data provide new molecular insights into the posttranslational regulatory mechanisms of JP2 in cardiac diseases.


Subject(s)
Calpain/metabolism , Membrane Proteins/metabolism , Myocytes, Cardiac/metabolism , Animals , Calcium/metabolism , Cells, Cultured , Down-Regulation , Excitation Contraction Coupling , Humans , Membrane Proteins/chemistry , Mice , Mice, Inbred C57BL , Myocardial Reperfusion Injury/metabolism , Proteolysis
20.
Proc Natl Acad Sci U S A ; 111(33): 12240-5, 2014 Aug 19.
Article in English | MEDLINE | ID: mdl-25092313

ABSTRACT

Heart failure is accompanied by a loss of the orderly disposition of transverse (T)-tubules and a decrease of their associations with the junctional sarcoplasmic reticulum (jSR). Junctophilin-2 (JP2) is a structural protein responsible for jSR/T-tubule docking. Animal models of cardiac stresses demonstrate that down-regulation of JP2 contributes to T-tubule disorganization, loss of excitation-contraction coupling, and heart failure development. Our objective was to determine whether JP2 overexpression attenuates stress-induced T-tubule disorganization and protects against heart failure progression. We therefore generated transgenic mice with cardiac-specific JP2 overexpression (JP2-OE). Baseline cardiac function and Ca(2+) handling properties were similar between JP2-OE and control mice. However, JP2-OE mice displayed a significant increase in the junctional coupling area between T-tubules and the SR and an elevated expression of the Na(+)/Ca(2+) exchanger, although other excitation-contraction coupling protein levels were not significantly changed. Despite similar cardiac function at baseline, overexpression of JP2 provided significantly protective benefits after pressure overload. This was accompanied by a decreased percentage of surviving mice that developed heart failure, as well as preservation of T-tubule network integrity in both the left and right ventricles. Taken together, these data suggest that strategies to maintain JP2 levels can prevent the progression from hypertrophy to heart failure.


Subject(s)
Heart Failure/metabolism , Membrane Proteins/metabolism , Muscle Proteins/metabolism , Stress, Physiological , Animals , Calcium/metabolism , Heart Failure/physiopathology , Mice , Mice, Transgenic , Myocytes, Cardiac/metabolism , Ventricular Pressure
SELECTION OF CITATIONS
SEARCH DETAIL
...