Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Plant Biotechnol (Tokyo) ; 40(3): 193-200, 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-38293251

ABSTRACT

Genetic improvement of soybean seed traits is important for developing new varieties that meet the demand for soybean as a food, forage crop, and industrial products. A large number of soybean genome sequences are currently publicly available. This genome sequence information provides a significant opportunity to design genomic approaches to improve soybean traits. Genome editing represents a major advancement in biotechnology. The production of soybean mutants through genome editing is commonly achieved with either an Agrobacterium-mediated or biolistic transformation platform, which have been optimized for various soybean genotypes. Currently, the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated endonuclease 9 (Cas9) system, which represents a major advance in genome editing, is used to improve soybean traits, such as fatty acid composition, protein content and composition, flavor, digestibility, size, and seed-coat color. In this review, we summarize the recent advances in the improvement of soybean seed traits through genome editing. We also discuss the characteristics of genome editing using the CRISPR/Cas9 system with transformation platforms.

2.
Plants (Basel) ; 10(8)2021 Aug 05.
Article in English | MEDLINE | ID: mdl-34451652

ABSTRACT

TAD1 (Triticum aestivum defensin 1) is a plant defensin specifically induced by low temperature in winter wheat. In this study, we demonstrated that TAD1 accumulated in the apoplast during cold acclimation and displayed antifungal activity against the pink snow mold fungi Microdochium nivale. When M. nivale was treated with TAD1, Congo red-stainable extracellular polysaccharides (EPS) were produced. The EPS were degradable by cellulase treatment, suggesting the involvement of ß-1,4 glucans. Interestingly, when the fungus was treated with FITC-labeled TAD1, fluorescent signals were observed within the EPS layer. Taken together, these results support the hypothesis that the EPS plays a role as a physical barrier against antimicrobial proteins secreted by plants. We anticipate that the findings from our study will have broad impact and will increase our understanding of plant-snow mold interactions under snow.

4.
Adv Exp Med Biol ; 1081: 289-320, 2018.
Article in English | MEDLINE | ID: mdl-30288716

ABSTRACT

Studies on supercooling-promoting substances (SCPSs) are reviewed introducing name of chemicals, experimental conditions and the supercooling capability (SCC) in all, so far recognized, reported SCPSs and results of our original study are presented in order to totally show the functional properties of SCPSs which are known in the present state. Many kinds of substances have been identified as SCPSs that promote supercooling of aqueous solutions in a non-colligative manner by reducing the ice nucleation capability (INC) of ice nucleators (INs). The SCC as revealed by reduction of freezing temperature (°C) by SCPSs differs greatly depending on the INs. While no single SCPS that affects homogeneous ice nucleation to reduce ice nucleation point has been found, many SCPSs have been found to reduce freezing temperatures by heterogeneous ice nucleation with a large fluctuation of SCC depending on the kind of heterogeneous IN. Not only SCPSs increase the degree of SCC (°C), but also some SCPSs have additional SCC to stabilize a supercooling state for a long term to stabilize supercooling against strong mechanical disturbance and to reduce sublimation of ice crystals. The mechanisms underlying the diverse functions of SCPSs remain to be determined in future studies.


Subject(s)
Antifreeze Proteins/chemistry , Cryoprotective Agents/chemistry , Freezing , Ice/analysis , Crystallization , Models, Chemical
5.
J Phys Chem B ; 121(27): 6580-6587, 2017 07 13.
Article in English | MEDLINE | ID: mdl-28617608

ABSTRACT

Various water-soluble substances are known as anti-ice nucleating agents (anti-INAs), which inhibit heterogeneous ice nucleation initiated by ice nucleating agents (INAs). Among them, several surfactants are reportedly effective as anti-INAs especially against silver iodide (AgI), which is a typical inorganic INA that induces heterogeneous ice nucleation at relatively high temperatures. In this study, the anti-ice nucleating activities of seven surfactants were examined in emulsified surfactant solutions containing AgI particles. Among previously reported anti-INAs (e.g., antifreeze proteins (AFPs), polyphenol compounds and synthetic polymers), a cationic surfactant used in this study, hexadecyltrimethylammonium bromide (C16TAB), showed the highest anti-ice nucleating activity against AgI. Based on the unique concentration-dependent dispersibility of AgI particles in C16TAB solution, the anti-ice nucleating activity of C16TAB must be caused by the adsorption of C16TAB molecules on AgI surfaces either as a monolayer or a bilayer depending on the C16TAB concentration.

6.
J Biotechnol ; 228: 3-7, 2016 Jun 20.
Article in English | MEDLINE | ID: mdl-27080445

ABSTRACT

TAD1 (Triticum aestivum defensin 1) is induced during cold acclimation in winter wheat and encodes a plant defensin with antimicrobial activity. In this study, we demonstrated that recombinant TAD1 protein inhibits hyphal growth of the snow mold fungus, Typhula ishikariensis in vitro. Transgenic wheat plants overexpressing TAD1 were created and tested for resistance against T. ishikariensis. Leaf inoculation assays revealed that overexpression of TAD1 confers resistance against the snow mold. In addition, the TAD1-overexpressors showed resistance against Fusarium graminearum, which causes Fusarium head blight, a devastating disease in wheat and barley. These results indicate that TAD1 is a candidate gene to improve resistance against multiple fungal diseases in cereal crops.


Subject(s)
Agaricales/drug effects , Defensins/pharmacology , Disease Resistance/physiology , Plant Proteins/pharmacology , Plants, Genetically Modified/physiology , Triticum/physiology , Defensins/genetics , Defensins/metabolism , Disease Resistance/genetics , Host-Pathogen Interactions , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/microbiology , Triticum/genetics , Triticum/microbiology
7.
Cryobiology ; 69(2): 223-8, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25086201

ABSTRACT

Freeze-avoiding organisms survive sub-zero temperatures without freezing in several ways, such as removal of ice nucleating agents (INAs), production of polyols, and dehydration. Another way is production of anti-ice nucleating agents (anti-INAs), such as has been reported for several antifreeze proteins (AFPs) and polyphenols, that inhibit ice nucleation by inactivating INAs. In this study, the anti-ice nucleating activity of five polyphenol compounds, including flavonoid and tannin compounds of both biological and synthetic origin, against silver iodide (AgI) was examined by measuring the ice nucleation temperature in emulsified polyphenol solutions containing AgI particles. The emulsified solutions eliminated the influence of contamination by unidentified INAs, thus enabling examination of the anti-ice nucleating activity of the polyphenols against AgI alone. Results showed that all five polyphenol compounds used here have anti-ice nucleating activities that are unique compared with other known anti-INAs, such as fish AFPs (type I and III) and synthetic polymers (poly(vinyl alcohol), poly(vinylpyrrolidone) and poly(ethylene glycol)). All five polyphenols completely inactivated the ice nucleating activity of AgI even at relatively low temperatures, and the first ice nucleation event was observed at temperatures between -14.1 and -19.4°C, compared with between -8.6 and -11.8°C for the fish AFPs and three synthetic polymers. These anti-ice nucleating activities of the polyphenols at such low temperatures are promising properties for practical applications where freezing should be prevented.


Subject(s)
Cryoprotective Agents/chemistry , Ice/analysis , Iodides/chemistry , Polyphenols/chemistry , Silver Compounds/chemistry , Animals , Antifreeze Proteins/chemistry , Crystallization , Fishes , Freezing , Solutions
8.
Cryobiology ; 69(1): 10-6, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24792543

ABSTRACT

Supercooling-promoting activities (SCAs) of 25 kinds of surfactants including non-ionic, anionic, cationic and amphoteric types were examined in solutions (buffered Milli-Q water, BMQW) containing the ice nucleation bacterium (INB) Erwinia ananas, silver iodide (AgI) or BMQW alone, which unintentionally contained unidentified ice nucleators, by a droplet freezing assay. Most of the surfactants exhibited SCA in solutions containing AgI but not in solutions containing the INB E. ananas or BMQW alone. SCAs of many surfactants in solutions containing AgI were very high compared with those of previously reported supercooling-promoting substances. Cationic surfactants, hexadecyltrimethylammonium bromide (C16TAB) and hexadecyltrimethylammonium chloride (C16TAC), at concentrations of 0.01% (w/v) exhibited SCA of 11.8 °C, which is the highest SCA so far reported. These surfactants also showed high SCAs at very low concentrations in solutions containing AgI. C16TAB exhibited SCA of 5.7 °C at a concentration of 0.0005% (w/v).


Subject(s)
Cold Temperature , Freezing , Surface-Active Agents/chemistry , Water/chemistry , Water/physiology , Cetrimonium , Cetrimonium Compounds/chemistry , Crystallization , Erwinia , Ice , Iodides/chemistry , Quaternary Ammonium Compounds/chemistry , Silver Compounds/chemistry
9.
Cryobiology ; 67(1): 40-9, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23644016

ABSTRACT

Based on the discovery of novel supercooling-promoting hydrolyzable gallotannins from deep supercooling xylem parenchyma cells (XPCs) in Katsura tree (see Wang et al. (2012) [38]), supercooling capability of a wide variety of tannin-related polyphenols (TRPs) was examined in order to find more effective supercooling-promoting substances for their applications. The TRPs examined were single compounds including six kinds of hydrolyzable tannins, 11 kinds of catechin derivatives, two kinds of structural analogs of catechin and six kinds of phenolcarboxylic acid derivatives, 11 kinds of polyphenol mixtures and five kinds of crude plant tannin extracts. The effects of these TRPs on freezing were examined by droplet freezing assays using various solutions containing different kinds of identified ice nucleators such as the ice nucleation bacterium (INB) Erwinia ananas, the INB Xanthomonas campestris, silver iodide and phloroglucinol as well as a solution containing only unintentionally included unidentified airborne ice nucleators. Among the 41 kinds of TRPs examined, all of the hydrolyzable tannins, catechin derivatives, polyphenol mixtures and crude plant tannin extracts as well as a few structural analogs of catechin and phenolcarboxylic acid derivatives exhibited supercooling-promoting activity (SCA) with significant differences (p>0.05) from at least one of the solutions containing different kinds of ice nucleators. It should be noted that there were no TRPs exhibiting ice nucleation-enhancing activity (INA) in all solutions containing identified ice nucleators, whereas there were many TRPs exhibiting INA with significant differences in solutions containing unidentified ice nucleators alone. An emulsion freezing assay confirmed that these TRPs did not essentially affect homogeneous ice nucleation temperatures. It is thought that not only SCA but also INA in the TRPs are produced by interactions with heterogeneous ice nucleators, not by direct interaction with water molecules. In the present study, several TRPs that might be useful for applications due to their high SCA in many solutions were identified.


Subject(s)
Plant Extracts/chemistry , Polyphenols/chemistry , Tannins/chemistry , Erwinia , Freezing , Iodides/chemistry , Magnoliopsida , Phloroglucinol/chemistry , Silver Compounds/chemistry , Xanthomonas campestris
10.
Cryobiology ; 64(3): 279-85, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22406212

ABSTRACT

In this study, we examined the effects on freezing of 26 kinds of flavonoid compounds, which were randomly selected as compounds with structures similar to those of flavonoid compounds existing in deep supercooling xylem parenchyma cells (XPCs) in trees, in solutions containing different kinds of ice nucleators, including the ice nucleation bacterium (INB) Erwinia ananas, INB Xanthomonas campestris, silver iodide, phloroglucinol and unidentified airborne impurities in buffered Milli-Q water (BMQW). Cumulative freezing spectra were obtained in each solution by cooling 2 µL droplets at 0.2 °C/min by a droplet freezing assay. Freezing temperature of 50% droplets (FT(50)) was obtained from each spectra in a separate analysis with more than 20 droplets and mean FT(50) were obtained from more than five separate analyses using more than 100 droplets in total in each flavonoid. Supercooling-promoting activities (SCA) or ice nucleation-enhancing activities (INA) of these flavonoids were determined by the difference in FT(50) between control solutions without flavonoids and experimental solutions with flavonoids. In mean values, most of the compounds examined exhibited SCA in solutions containing the INB E. ananas, INB X. campestris, silver iodide, and phloroglucinol although the magnitudes of their activities were different depending on the ice nucleator. In solutions containing the INB E. ananas, 10 compounds exhibited SCAs with significant differences (p<0.05) in the range of 1.4-4.2 °C. In solutions containing silver iodide, 23 compounds exhibited SCAs with significant differences in the range of 2.0-7.1 °C. In solutions containing phloroglucinol, six compounds exhibited SCAs with significant differences in the range of 2.4-3.5 °C. In solutions containing the INB X. campestris, only three compounds exhibited SCAs with significant differences in the range of 0.9-2.3 °C. In solutions containing unidentified airborne impurities (BMQW alone), on the other hand, many compounds exhibited INA rather than SCA. In mean values, only four compounds exhibited SCAs in the range of 2.4-3.2 °C (no compounds with significant difference at p<0.05), whereas 21 compounds exhibited INAs in the range of 0.1-12.3 °C (eight compounds with significant difference). It was also shown by an emulsion freezing assay that most flavonoid glycosides examined did not affect homogeneous ice nucleation temperatures, except for a few compounds that become ice nucleators in BMQW alone. These results suggest that most flavonoid compounds affect freezing temperatures by interaction with unidentified ice nucleators in BMQW as examined by a droplet freezing assay. The results of our previous and present studies indicate that flavonoid compounds have very complex effects to regulate freezing of water.


Subject(s)
Erwinia/chemistry , Flavonoids/chemistry , Xanthomonas campestris/chemistry , Xylem/chemistry , Freezing , Ice , Iodides/chemistry , Molecular Structure , Phase Transition , Phloroglucinol/chemistry , Plants , Silver Compounds/chemistry , Solutions , Water/chemistry
11.
Planta ; 235(4): 747-59, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22038380

ABSTRACT

Xylem parenchyma cells (XPCs) in trees adapt to subzero temperatures by deep supercooling. Our previous study indicated the possibility of the presence of diverse kinds of supercooling-facilitating (SCF; anti-ice nucleation) substances in XPCs of katsura tree (Cercidiphyllum japonicum), all of which might have an important role in deep supercooling of XPCs. In the previous study, a few kinds of SCF flavonol glycosides were identified. Thus, in the present study, we tried to identify other kinds of SCF substances in XPCs of katsura tree. SCF substances were purified from xylem extracts by silica gel column chromatography and Sephadex LH-20 column chromatography. Then, four SCF substances isolated were identified by UV, mass and nuclear magnetic resonance analyses. The results showed that the four kinds of hydrolyzable gallotannins, 2,2',5-tri-O-galloyl-α,ß-D-hamamelose (trigalloyl Ham or kurigalin), 1,2,6-tri-O-galloyl-ß-D-glucopyranoside (trigalloyl Glc), 1,2,3,6-tetra-O-galloyl-ß-D-glucopyranoside (tetragalloyl Glc) and 1,2,3,4,6-penta-O-galloyl-ß-D-glucopyranoside (pentagalloyl Glc), in XPCs exhibited supercooling capabilities in the range of 1.5-4.5°C, at a concentration of 1 mg mL⁻¹. These SCF substances, including flavonol glycosides and hydrolyzable gallotannins, may contribute to the supercooling in XPCs of katsura tree.


Subject(s)
Hydrolyzable Tannins/metabolism , Magnoliopsida/metabolism , Xylem/metabolism , Acclimatization , Flavonols/metabolism , Freezing , Glycosides/metabolism , Hydrolyzable Tannins/analysis , Japan , Magnoliopsida/chemistry , Trees/chemistry , Trees/metabolism , Xylem/chemistry
12.
Cryobiology ; 63(3): 157-63, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21906586

ABSTRACT

Deep supercooling xylem parenchyma cells (XPCs) in Katsura tree contain flavonol glycosides with high supercooling-facilitating capability in solutions containing the ice nucleation bacterium (INB) Erwinia ananas, which is thought to have an important role in deep supercooling of XPCs. The present study, in order to further clarify the roles of these flavonol glycosides in deep supercooling of XPCs, the effects of these supercooling-facilitating (anti-ice nucleating) flavonol glycosides, kaempferol 3-O-ß-D-glucopyranoside (K3Glc), kaempferol 7-O-ß-D-glucopyranoside (K7Glc) and quercetin 3-O-ß-D-glucopyranoside (Q3Glc), in buffered Milli-Q water (BMQW) containing different kinds of ice nucleators, including INB Xanthomonas campestris, silver iodide and phloroglucinol, were examined by a droplet freezing assay. The results showed that all of the flavonol glycosides promoted supercooling in all solutions containing different kinds of ice nucleators, although the magnitudes of supercooling capability of each flavonol glycoside changed in solutions containing different kinds of ice nucleators. On the other hand, these flavonol glycosides exhibited complicated nucleating reactions in BMQW, which did not contain identified ice nucleators but contained only unidentified airborne impurities. Q3Glc exhibited both supercooling-facilitating and ice nucleating capabilities depending on the concentrations in such water. Both K3Glc and K7Glc exhibited only ice nucleation capability in such water. It was also shown by an emulsion freezing assay in BMQW that K3Glc and Q3Glc had no effect on homogeneous ice nucleation temperature, whereas K7Glc increased ice nucleation temperature. The results indicated that each flavonol glycoside affected ice nucleation by very complicated and varied reactions. More studies are necessary to determine the exact roles of these flavonol glycosides in deep supercooling of XPCs in which unidentified heterogeneous ice nucleators may exist.


Subject(s)
Cryoprotective Agents/pharmacology , Excipients/pharmacology , Kaempferols/pharmacology , Solutions/chemistry , Erwinia/physiology , Freezing , Ice , Iodides/pharmacology , Mesophyll Cells/drug effects , Mesophyll Cells/physiology , Monosaccharides/pharmacology , Phloroglucinol/pharmacology , Quercetin/analogs & derivatives , Quercetin/pharmacology , Silver Compounds/pharmacology , Trees , Water/chemistry , Xanthomonas campestris/physiology , Xylem/drug effects , Xylem/physiology
13.
Tree Physiol ; 30(4): 502-13, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20100700

ABSTRACT

With seasonal changes, several proteins accumulate in the endoplasmic reticulum (ER)-enriched fraction in the bark of mulberry tree (Morus bombycis Koidz.). Results of partial amino acid sequence analysis in our previous study suggested that one of these proteins is the ER-localized small heat shock protein (sHSP), designated 20-kD winter-accumulating protein (WAP20). In the present study, molecular and biochemical properties of WAP20 were investigated in detail. The deduced amino acid sequence of the cDNA has the predicted signal sequence to the ER, retention signal to the ER and two consensus regions conserved in sHSPs. Recombinant WAP20 expressed in Escherichia coli also showed typical biochemical features of sHSPs, including the formation of a high-molecular-mass complex between 200 and 300 kD under native conditions, promotion of the renaturation of chemically denaturated citrate synthase and prevention of heat stress-induced aggregation of the enzyme. Transcript levels of WAP20 in the bark tissue were seasonally changed, showing high expression levels from mid-October to mid-December, and the transcript levels were additionally increased and decreased by cold treatment and warm treatment, respectively. WAP20 transcripts were detected abundantly in bark tissue rather than xylem and winter bud tissues during seasonal cold acclimation. The bark tissue specificity of WAP20 accumulation was also observed by exogenous application of phytohormone abscisic acid (ABA) in de-acclimated twigs, whereas WAP20 transcripts were increased in all of these tissues by heat shock treatment at 37 degrees C in summer twigs. The results suggest that ABA may be involved in the expression of the WAP20 gene in bark tissue of the mulberry tree during seasonal cold acclimation.


Subject(s)
Abscisic Acid/metabolism , Acclimatization , Endoplasmic Reticulum/metabolism , Heat-Shock Proteins, Small/metabolism , Morus/metabolism , Amino Acid Sequence , Cold Temperature , Heat-Shock Proteins, Small/chemistry , Heat-Shock Proteins, Small/genetics , Hot Temperature , Molecular Sequence Data , Morus/genetics , Plant Bark/metabolism , Seasons
14.
Cryobiology ; 60(2): 240-3, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20040364

ABSTRACT

Deep supercooling xylem parenchyma cells (XPCs) of katsura tree (Cercidiphyllum japonicum) contain four kinds of flavonol glycosides with high supercooling-facilitating (anti-ice nucleation) activities. These flavonol glycosides have very similar structures, but their supercooling-facilitating activities are very different. In this study, we analyzed the supercooling-facilitating activities of 12 kinds of flavonol glycosides in order to determine the chemical structures that might affect supercooling-facilitating activity. All of the flavonol glycosides tested showed supercooling-facilitating activity, although the magnitudes of activity differed among the compounds. It was clear that the combination of the position of attachment of the glycosyl moiety, the kind of attached glycosyl moiety and the structure of aglycone determined the magnitude of anti-ice nucleation activity. However, there is still some ambiguity preventing the exact identification of features that affect the magnitude of supercooling-facilitating activity.


Subject(s)
Cryoprotective Agents/pharmacology , Flavonols/pharmacology , Glycosides/pharmacology , Cryoprotective Agents/chemistry , Cryoprotective Agents/isolation & purification , Flavonoids/chemistry , Flavonoids/isolation & purification , Flavonoids/pharmacology , Flavonols/chemistry , Flavonols/isolation & purification , Glycosides/chemistry , Glycosides/isolation & purification , Ice , In Vitro Techniques , Kaempferols/chemistry , Kaempferols/isolation & purification , Kaempferols/pharmacology , Molecular Structure , Quercetin/analogs & derivatives , Quercetin/chemistry , Quercetin/isolation & purification , Quercetin/pharmacology , Trees/chemistry
15.
Physiol Plant ; 115(1): 101-110, 2002 May.
Article in English | MEDLINE | ID: mdl-12010473

ABSTRACT

Cold acclimation of winter wheat (Triticum aestivum L.) seedlings induces accumulation in the apoplast of taTLPs that are similar to thaumatin-like proteins (TLPs), which are pathogenesis-related proteins. We characterized a cDNA of WAS-3a encoding the major isoform of taTLPs from winter wheat cells and showed that WAS-3a transcripts were markedly increased by treatment with ABA and by treatment with elicitors (chitosan, beta-glucan and cell wall fractions of Fusarium oxysporum and Microdochium nivale) in wheat cells. To analyse the function of WAS-3a, a highly efficient expression system using wheat cells was established, and a large amount of recombinant WAS-3a protein (rWAS-3a) was obtained with near homogeneity. Antifungal assays using various fungi grown on agar plates revealed that rWAS-3a inhibits hyphal growth of pink snow mould, Microdochium nivale, at a low temperature. The results suggest that cold-induced taTLPs that accumulate in the apoplast contribute to snow mould resistance of winter wheat.

SELECTION OF CITATIONS
SEARCH DETAIL
...