Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 14(12)2021 Jun 14.
Article in English | MEDLINE | ID: mdl-34198489

ABSTRACT

The patterning of arrays of aligned multi-walled carbon nanotubes (MWCNTs) allows creating metastructures for terahertz (THz) applications. Here, the strips and columns from MWCNTs vertically grown on silicon substrates are prepared using CO2 laser treatment. The tops of the patterned arrays are flat when the laser power is between 15 and 22 W, and craters appear there with increasing power. Laser treatment does not destroy the alignment of MWCNTs while removing their poorly ordered external layers. The products of oxidative destruction of these layers deposit on the surfaces of newly produced arrays. The oxygen groups resulting from the CO2 laser treatment improve the wettability of nanotube arrays with an epoxy resin. We show that the patterned MWCNT arrays absorb the THz radiation more strongly than the as-synthesized arrays. Moreover, the pattern influences the frequency behavior of the absorbance.

2.
Sci Rep ; 10(1): 9361, 2020 Jun 09.
Article in English | MEDLINE | ID: mdl-32518356

ABSTRACT

The composites and thin films comprising individual single-walled carbon nanotubes with a polymer coating (p-CNTs) have been prepared and their electromagnetic responses have been studied in a wide range from low-frequency (25-107 Hz) up to the infrared region. In spite of the high volume fraction of the nanotubes (up to 3.3%), the polymer coating prevents direct p-CNT contacts and the formation of the percolation network in those composites, so that p-CNTs interact only via the electromagnetic coupling. Thereby it is an ideal model system to verify experimentally the fundamental issues related to carbon nanotube electromagnetics, such as the influence of inter-tube electron tunneling on the localized plasmon resonance in the terahertz range, or the infrared absorption enhancement of polymer molecules attached to the nanotube surface. Along with addressing the fundamentals, applied carbon nanotube electromagnetics got insights important for the applications of p-CNT based composites as dielectric media in the terahertz regime. In particular, we found that the real part of the permittivity of the p-CNT film in the terahertz range is rather competitive, i.e. 8-13, however the loss tangent is not so small (0.4-0.6) as has been predicted. The way to increase p-CNT terahertz performance is also discussed.

3.
Nanoscale Res Lett ; 10(1): 946, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26055479

ABSTRACT

We report a comparative study of optical properties of 5-20 nm thick pyrolytic carbon (PyC) films, graphite, and graphene. The complex dielectric permittivity of PyC is obtained by measuring polarization-sensitive reflectance and transmittance spectra of the PyC films deposited on silica substrate. The Lorentz-Drude model describes well the general features of the optical properties of PyC from 360 to 1100 nm. By comparing the obtained results with literature data for graphene and highly ordered pyrolytic graphite, we found that in the visible spectral range, the effective dielectric permittivity of the ultrathin PyC films are comparable with those of graphite and graphene.

4.
Nanoscale Res Lett ; 8(1): 60, 2013 Feb 07.
Article in English | MEDLINE | ID: mdl-23388194

ABSTRACT

We analyzed the electromagnetic (EM) shielding effectiveness in the Ka band (26 to 37 GHz) of highly amorphous nanometrically thin pyrolytic carbon (PyC) films with lateral dimensions of 7.2 × 3.4 mm2, which consists of randomly oriented and intertwined graphene flakes with a typical size of a few nanometers. We discovered that the manufactured PyC films, whose thickness is thousand times less than the skin depth of conventional metals, provide a reasonably high EM attenuation. The latter is caused by absorption losses that can be as high as 38% to 20% in the microwave frequency range. Being semi-transparent in visible and infrared spectral ranges and highly conductive at room temperature, PyC films emerge as a promising material for manufacturing ultrathin microwave (e.g., Ka band) filters and shields.

SELECTION OF CITATIONS
SEARCH DETAIL
...