Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 10958, 2023 07 06.
Article in English | MEDLINE | ID: mdl-37414788

ABSTRACT

The advent of combined antiretroviral therapy (cART) has been instrumental in controlling HIV-1 replication and transmission and decreasing associated morbidity and mortality. However, cART alone is not able to cure HIV-1 due to the presence of long-lived, latently infected immune cells, which re-seed plasma viremia when cART is interrupted. Assessment of HIV-cure strategies using ex vivo culture methods for further understanding of the diversity of reactivated HIV, viral outgrowth, and replication dynamics are enhanced using ultrasensitive digital ELISA based on single-molecule array (Simoa) technology to increase the sensitivity of endpoint detection. In viral outgrowth assays (VOA), exponential HIV-1 outgrowth has been shown to be dependent upon initial virus burst size surpassing a critical growth threshold of 5100 HIV-1 RNA copies. Here, we show an association between ultrasensitive HIV-1 Gag p24 concentrations and HIV-1 RNA copy number that characterize viral dynamics below the exponential replication threshold. Single-genome sequencing (SGS) revealed the presence of multiple identical HIV-1 sequences, indicative of low-level replication occurring below the threshold of exponential outgrowth early during a VOA. However, SGS further revealed diverse related HIV variants detectable by ultrasensitive methods that failed to establish exponential outgrowth. Overall, our data suggest that viral outgrowth occurring below the threshold necessary for establishing exponential growth in culture does not preclude replication competence of reactivated HIV, and ultrasensitive detection of HIV-1 p24 may provide a method to detect previously unquantifiable variants. These data strongly support the use of the Simoa platform in a multi-prong approach to measuring latent viral burden and efficacy of therapeutic interventions aimed at an HIV-1 cure.


Subject(s)
HIV Infections , HIV Seropositivity , HIV-1 , Humans , HIV-1/genetics , Kinetics , Enzyme-Linked Immunosorbent Assay , HIV Core Protein p24 , RNA , Viral Load , CD4-Positive T-Lymphocytes , Virus Latency
2.
Viruses ; 14(4)2022 04 15.
Article in English | MEDLINE | ID: mdl-35458546

ABSTRACT

HIV-1 Vpu targets the host cell proteins CD4 and BST-2/Tetherin for degradation, ultimately resulting in enhanced virus spread and host immune evasion. The discovery and characterization of small molecules that antagonize Vpu would further elucidate the contribution of Vpu to pathogenesis and lay the foundation for the study of a new class of novel HIV-1 therapeutics. To identify novel compounds that block Vpu activity, we have developed a cell-based 'gain of function' assay that produces a positive signal in response to Vpu inhibition. To develop this assay, we took advantage of the viral glycoprotein, GaLV Env. In the presence of Vpu, GaLV Env is not incorporated into viral particles, resulting in non-infectious virions. Vpu inhibition restores infectious particle production. Using this assay, a high throughput screen of >650,000 compounds was performed to identify inhibitors that block the biological activity of Vpu. From this screen, we identified several positive hits but focused on two compounds from one structural family, SRI-41897 and SRI-42371. We developed independent counter-screens for off target interactions of the compounds and found no off target interactions. Additionally, these compounds block Vpu-mediated modulation of CD4, BST-2/Tetherin and antibody dependent cell-mediated toxicity (ADCC). Unfortunately, both SRI-41897 and SRI-42371 were shown to be specific to the N-terminal region of NL4-3 Vpu and did not function against other, more clinically relevant, strains of Vpu; however, this assay may be slightly modified to include more significant Vpu strains in the future.


Subject(s)
Anti-HIV Agents , HIV-1 , Human Immunodeficiency Virus Proteins , Viral Regulatory and Accessory Proteins , Viroporin Proteins , Anti-HIV Agents/chemistry , Bone Marrow Stromal Antigen 2/metabolism , GPI-Linked Proteins/metabolism , HIV-1/metabolism , Human Immunodeficiency Virus Proteins/antagonists & inhibitors , Human Immunodeficiency Virus Proteins/metabolism , Leukemia Virus, Gibbon Ape/metabolism , Small Molecule Libraries , Viral Regulatory and Accessory Proteins/antagonists & inhibitors , Viral Regulatory and Accessory Proteins/metabolism , Viroporin Proteins/antagonists & inhibitors
3.
ACS Infect Dis ; 8(1): 91-105, 2022 01 14.
Article in English | MEDLINE | ID: mdl-34985256

ABSTRACT

HIV-1 Nef is an attractive target for antiretroviral drug discovery because of its role in promoting HIV-1 infectivity, replication, and host immune system avoidance. Here, we applied a screening strategy in which recombinant HIV-1 Nef protein was coupled to activation of the Src-family tyrosine kinase Hck, which enhances the HIV-1 life cycle in macrophages. Nef stimulates recombinant Hck activity in vitro, providing a robust assay for chemical library screening. High-throughput screening of more than 730 000 compounds using the Nef·Hck assay identified six unique hit compounds that bound directly to recombinant Nef by surface plasmon resonance (SPR) in vitro and inhibited HIV-1 replication in primary macrophages in the 0.04 to 5 µM range without cytotoxicity. Eighty-four analogs were synthesized around an isothiazolone scaffold from this series, many of which bound to recombinant Nef and inhibited HIV-1 infectivity in the low to submicromolar range. Compounds in this series restored MHC-I to the surface of HIV-infected primary cells and disrupted a recombinant protein complex of Nef with the C-terminal tail of MHC-I and the µ1 subunit of the AP-1 endocytic trafficking protein. Nef inhibitors in this class have the potential to block HIV-1 replication in myeloid cells and trigger recognition of HIV-infected cells by the adaptive immune system in vivo.


Subject(s)
HIV-1 , Down-Regulation , HIV-1/metabolism , Macrophages/metabolism , Virus Replication , src-Family Kinases/metabolism
4.
EClinicalMedicine ; 42: 101225, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34901797

ABSTRACT

BACKGROUND: Achieving a functional or sterilizing cure for HIV will require identification of therapeutic interventions that reduce HIV reservoir size in infected individuals. Proteasome inhibitors, such as ixazomib, impact multiple aspects of HIV biology including latency, transcription initiation, viral replication, and infected cell killing through the HIV protease - Casp8p41 pathway, resulting in latency reversal and reduced measures of HIV reservoir size ex vivo. METHODS: We conducted a phase 1b/2a dose escalating, open label trial of weekly oral ixazomib for 24 weeks in antiretroviral (ART)-suppressed, HIV positive adults (NCT02946047). The study was conducted from March 2017 to August 2019 at two tertiary referral centers in the United States. The primary outcomes were safety and tolerability of oral ixazomib. Secondary outcomes included changes in immunologic markers and estimates of HIV reservoir size after ixazomib treatment. FINDINGS: Sixteen participants completed the study. Ixazomib up to 4mg weekly was safe and well-tolerated, yielding no treatment-emergent events above grade 1. In exploratory analyses, ixazomib treatment was associated with detectable viremia that was below the lower limit of quantification (LLQ) in 9 participants, and viremia that was above LLQ in 4 of 16 participants. While treatment was associated with reduced CD4 counts [baseline 783 cells/ mm3 vs. week-24 724 cells/ mm3 p=0.003], there were no changes in markers of cellular activation, exhaustion or inflammation. Total HIV DNA and proviral sequencing were not altered by ixazomib treatment. Intact proviral DNA assay (IPDA) identified intact proviruses in 14 patients pre-treatment, and in 10/14 of those subjects post treatment values were reduced (P=0.068), allowing a calculated intact proviral half life of 0.6 years (95% CI 0.3, 2.5), compared to 7.1 years (95% CI 3.9, 18, p=0.004) in historical controls. Differentiation Quantitative Viral Outgrowth Assays (dQVOA) identified measurable proviruses in 15 subjects pre-treatment; post-treatment values were numerically reduced in 9, but overall differences were not significantly different. INTERPRETATION: Our study successfully met its primary endpoint of demonstrating the safety of ixazomib for 24 weeks in HIV infected persons. Exploratory analyses suggest that the effects observed ex vivo of latency reversal and reductions in HIV reservoir size, also occur in vivo. Future controlled studies of ixazomib are warranted. FUNDING: This study was funded by Millennium Pharmaceuticals Inc..; the Mayo Clinic Foundation; the National Institutes of Health, including the National Institute of Allergy and Infectious Diseases, Division of AIDS, the National Heart, Lung and Blood Institute, the National Institute of Diabetes and Digestive and Kidney Diseases, the National Institute of Neurological Disorders and Stroke, and the National Institute on Drug Abuse. Mayo Clinic also acknowledges generous funding support from Mr. Joseph T. and Mrs. Michele P. Betten.

5.
Microorganisms ; 9(8)2021 Aug 16.
Article in English | MEDLINE | ID: mdl-34442823

ABSTRACT

SARS-CoV-2 genetic variants are emerging around the globe. Unfortunately, several SARS-CoV-2 variants, especially variants of concern (VOCs), are less susceptible to neutralization by the convalescent and post-vaccination sera, raising concerns of increased disease transmissibility and severity. Recent data suggests that SARS-CoV-2 neutralizing antibody levels are a reliable correlate of vaccine-mediated protection. However, currently used BSL3-based virus micro-neutralization (MN) assays are more laborious, time-consuming, and expensive, underscoring the need for BSL2-based, cost-effective neutralization assays against SARS-CoV-2 variants. In light of this unmet need, we have developed a BSL-2 pseudovirus-based neutralization assay (PBNA) in cells expressing the human angiotensin-converting enzyme-2 (hACE2) receptor for SARS-CoV-2. The assay is reproducible (R2 = 0.96), demonstrates a good dynamic range and high sensitivity. Our data suggest that the biological Anti-SARS-CoV-2 research reagents such as NIBSC 20/130 show lower neutralization against B.1.351 SA (South Africa) and B.1.1.7 UK (United Kingdom) VOC, whereas a commercially available monoclonal antibody MM43 retains activity against both these variants. SARS-CoV-2 spike PBNAs for VOCs would be useful tools to measure the neutralization ability of candidate vaccines in both preclinical models and clinical trials and would further help develop effective prophylactic countermeasures against emerging neutralization escape phenotypes.

6.
J Virus Erad ; 3(2): 85-89, 2017 Apr 01.
Article in English | MEDLINE | ID: mdl-28435692

ABSTRACT

AIMS: Latently infected resting CD4 T cells represent a major barrier to HIV-1 eradication efforts. The standard assays used for measuring this reservoir induce activation of resting CD4 T cells with either phytohaemagglutinin (PHA) with irradiated feeder cells, or with anti-CD3 antibodies. We designed a study to compare the sensitivity of a new assay (based on the stimulation of CD4 T cells with anti-CD3 and anti-CD28 coated microbeads) with that of the traditional PHA- and feeder-based viral outgrowth assay. METHODS: Resting CD4 T cells from 10 HIV-1-infected patients on suppressive combination antiretroviral therapy (cART) regimens were cultured in the traditional PHA/feeders viral outgrowth assay and the new CD3/CD28 bead-based assay. Flow cytometry was used to assess the kinetics of activation of resting CD4 T cells in the two different assays. RESULTS: There was no significant difference in the sensitivity of the two assays. The median frequency of latently infected cells was 0.83 infectious units per million (IUPM) for the PHA/feeders assay and 0.54 IUPM with the CD3/CD28 bead-based assay. However, while virus was obtained from all 10 patients with the traditional PHA/feeders outgrowth assay, no virus was obtained from two of 10 patients with the novel anti-CD3/CD28 bead-based viral outgrowth assay (IUPM < 0.02). CONCLUSION: The new CD3/CD28 bead-based assay has comparable sensitivity to the PHA/feeders assay and does not require the addition of feeders, making it a simpler and less labour-intensive alternative to the standard PHA/feeders-based assay.

7.
PLoS Pathog ; 11(3): e1004740, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25768938

ABSTRACT

The onset of protective immunity against pathogenic SIV challenge in SIVΔnef-vaccinated macaques is delayed for 15-20 weeks, a process that is related to qualitative changes in CD8+ T cell responses induced by SIVΔnef. As a novel approach to characterize cell differentiation following vaccination, we used multi-target qPCR to measure transcription factor expression in naïve and memory subsets of CD8++ T cells, and in SIV-specific CD8+ T cells obtained from SIVΔnef-vaccinated or wild type SIVmac239-infected macaques. Unsupervised clustering of expression profiles organized naïve and memory CD8+ T cells into groups concordant with cell surface phenotype. Transcription factor expression patterns in SIV-specific CD8+ T cells in SIVΔnef-vaccinated animals were distinct from those observed in purified CD8+ T cell subsets obtained from naïve animals, and were intermediate to expression profiles of purified central memory and effector memory T cells. Expression of transcription factors elicited by SIVΔnef vaccination also varied over time: cells obtained at later time points, temporally associated with greater protection, appeared more central-memory like than cells obtained at earlier time points, which appeared more effector memory-like. Expression of transcription factors associated with effector differentiation, such as ID2 and RUNX3, were decreased over time, while expression of transcription factors associated with quiescence or memory differentiation, such as TCF7, BCOR and EOMES, increased. CD8+ T cells specific for a more conserved epitope expressed higher levels of TBX21 and BATF, and appeared more effector-like than cells specific for an escaped epitope, consistent with continued activation by replicating vaccine virus. These data suggest transcription factor expression profiling is a novel method that can provide additional data complementary to the analysis of memory cell differentiation based on classical phenotypic markers. Additionally, these data support the hypothesis that ongoing stimulation by SIVΔnef promotes a distinct protective balance of CD8+ T cell differentiation and activation states.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Immunologic Memory , SAIDS Vaccines/immunology , Simian Immunodeficiency Virus/immunology , Transcription Factors/immunology , Viral Regulatory and Accessory Proteins , Animals , CD8-Positive T-Lymphocytes/pathology , Cell Differentiation/immunology , Female , Gene Expression Profiling , Macaca mulatta , SAIDS Vaccines/genetics , Simian Immunodeficiency Virus/genetics , Transcription Factors/genetics
8.
Blood ; 118(12): 3321-30, 2011 Sep 22.
Article in English | MEDLINE | ID: mdl-21791421

ABSTRACT

Natural killer (NK) cells are classically viewed as effector cells that kill virus-infected and neoplastic cells, but recent studies have identified a rare mucosal NK- cell subpopulation secreting the TH17 cytokine IL-22. Here, we report identification of 2 distinct lineages of mucosal NK cells characterized as NKG2A(+)NFIL3(+)RORC(-) and NKp44(+)NFIL3(+)RORC(+). NKG2A(+) NK cells were systemically distributed, cytotoxic, and secreted IFN-γ, whereas NKp44(+) NK cells were mucosae-restricted, noncytotoxic, and produced IL-22 and IL-17. During SIV infection, NKp44(+) NK cells became apoptotic, were depleted, and had an altered functional profile characterized by decreased IL-17 secretion; increased IFN-γ secretion; and, surprisingly, increased potential for cytotoxicity. NKp44(+) NK cells showed no evidence of direct SIV infection; rather, depletion and altered function were associated with SIV-induced up-regulation of inflammatory mediators in the gut, including indoleamine 2,3-dioxygenase 1. Furthermore, treatment of NKp44(+) NK cells with indoleamine 2,3-dioxygenase 1 catabolites in vitro ablated IL-17 production in a dose-dependent manner, whereas other NK-cell functions were unaffected. Thus lentiviral infection both depletes and modifies the functional repertoire of mucosal NK cells involved in the maintenance of gut integrity, a finding that highlights the plasticity of this rare mucosal NK-cell population.


Subject(s)
Cytotoxicity, Immunologic/drug effects , Gastric Mucosa/drug effects , Immunity, Mucosal/drug effects , Indoleamine-Pyrrole 2,3,-Dioxygenase/pharmacology , Inflammation/immunology , Interleukin-17/antagonists & inhibitors , Killer Cells, Natural/immunology , Simian Acquired Immunodeficiency Syndrome/immunology , T-Lymphocyte Subsets/immunology , Animals , Cell Lineage/immunology , Cytotoxicity, Immunologic/immunology , Flow Cytometry , Gastric Mucosa/immunology , Gastric Mucosa/metabolism , Immunity, Mucosal/immunology , Inflammation/metabolism , Inflammation/pathology , Inflammation/virology , Interferon-gamma/biosynthesis , Interleukin-17/biosynthesis , Interleukins/biosynthesis , Killer Cells, Natural/cytology , Killer Cells, Natural/metabolism , Macaca mulatta , Natural Cytotoxicity Triggering Receptor 2/immunology , Primary Cell Culture , Receptors, Immunologic/genetics , Receptors, Immunologic/immunology , Receptors, Immunologic/metabolism , Simian Acquired Immunodeficiency Syndrome/metabolism , Simian Acquired Immunodeficiency Syndrome/pathology , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/drug effects , Simian Immunodeficiency Virus/growth & development , T-Lymphocyte Subsets/cytology , T-Lymphocyte Subsets/metabolism , Viral Load/drug effects , Virus Replication/drug effects , Interleukin-22
SELECTION OF CITATIONS
SEARCH DETAIL
...