Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Appl ; 33(6): e2890, 2023 09.
Article in English | MEDLINE | ID: mdl-37212374

ABSTRACT

Outbreaks of the spongy moth Lymantria dispar can have devastating impacts on forest resources and ecosystems. Lepidoptera-specific insecticides, such as Bacillus thuringiensis var. kurstaki (BTK) and tebufenozide, are often deployed to prevent heavy defoliation of the forest canopy. While it has been suggested that using BTK poses less risk to non-target Lepidoptera than leaving an outbreak untreated, in situ testing of this assumption has been impeded by methodological challenges. The trade-offs between insecticide use and outbreaks have yet to be addressed for tebufenozide, which is believed to have stronger side effects than BTK. We investigated the short-term trade-offs between tebufenozide treatments and no-action strategies for the non-target herbivore community in forest canopies. Over 3 years, Lepidoptera and Symphyta larvae were sampled by canopy fogging in 48 oak stands in southeast Germany during and after a spongy moth outbreak. Half of the sites were treated with tebufenozide and changes in canopy cover were monitored. We contrasted the impacts of tebufenozide and defoliator outbreaks on the abundance, diversity, and functional structure of chewing herbivore communities. Tebufenozide treatments strongly reduced Lepidoptera up to 6 weeks after spraying. Populations gradually converged back to control levels after 2 years. Shelter-building species dominated caterpillar assemblages in treated plots in the post-spray weeks, while flight-dimorphic species were slow to recover and remained underrepresented in treated stands 2 years post-treatment. Spongy moth outbreaks had minor effects on leaf chewer communities. Summer Lepidoptera decreased only when severe defoliation occurred, whereas Symphyta declined 1 year after defoliation. Polyphagous species with only partial host plant overlap with the spongy moth were absent from heavily defoliated sites, suggesting greater sensitivity of generalists to defoliation-induced plant responses. These results demonstrate that both tebufenozide treatments and spongy moth outbreaks alter canopy herbivore communities. Tebufenozide had a stronger and longer lasting impact, but it was restricted to Lepidoptera, whereas the outbreak affected both Lepidoptera and Symphyta. These results are tied to the fact that only half of the outbreak sites experienced severe defoliation. This highlights the limited accuracy of current defoliation forecast methods, which are used as the basis for the decision to spray insecticides.


Subject(s)
Bacillus thuringiensis , Insecticides , Moths , Animals , Ecosystem
2.
Appl Plant Sci ; 6(5): e01155, 2018 May.
Article in English | MEDLINE | ID: mdl-30131897

ABSTRACT

PREMISE OF THE STUDY: The detection of environmental DNA (eDNA) using high-throughput sequencing has rapidly emerged as a method to detect organisms from environmental samples. However, eDNA studies of aquatic biomes have focused on surveillance of animal species with less emphasis on plants. Pondweeds are important bioindicators of freshwater ecosystems, although their diversity is underestimated due to difficulties in morphological identification and monitoring. METHODS: A protocol was developed to detect pondweeds in water samples using atpB-rbcL and ITS2 markers. The water samples were collected from the Grand River within the rare Charitable Research Reserve, Ontario (RARE). Short fragments were amplified using primers targeting pondweeds, sequenced on an Ion Torrent Personal Genome Machine, and assigned to the taxonomy using a local DNA reference library and GenBank. RESULTS: We detected two species earlier documented at the experimental site during ecological surveys (Potamogeton crispus and Stuckenia pectinata) and three species new to the RARE checklist (P. foliosus, S. filiformis, and Zannichellia palustris). DISCUSSION: Our targeted approach to track the species composition of pondweeds in freshwater ecosystems revealed underestimation of their diversity. This result suggests that eDNA is an effective tool for monitoring plant diversity in aquatic habitats.

3.
PLoS One ; 12(1): e0169515, 2017.
Article in English | MEDLINE | ID: mdl-28072819

ABSTRACT

Their relatively slow rates of molecular evolution, as well as frequent exposure to hybridization and introgression, often make it difficult to discriminate species of vascular plants with the standard barcode markers (rbcL, matK, ITS2). Previous studies have examined these constraints in narrow geographic or taxonomic contexts, but the present investigation expands analysis to consider the performance of these gene regions in discriminating the species in local floras at sites across Canada. To test identification success, we employed a DNA barcode reference library with sequence records for 96% of the 5108 vascular plant species known from Canada, but coverage varied from 94% for rbcL to 60% for ITS2 and 39% for matK. Using plant lists from 27 national parks and one scientific reserve, we tested the efficacy of DNA barcodes in identifying the plants in simulated species assemblages from six biogeographic regions of Canada using BLAST and mothur. Mean pairwise distance (MPD) and mean nearest taxon distance (MNTD) were strong predictors of barcode performance for different plant families and genera, and both metrics supported ITS2 as possessing the highest genetic diversity. All three genes performed strongly in assigning the taxa present in local floras to the correct genus with values ranging from 91% for rbcL to 97% for ITS2 and 98% for matK. However, matK delivered the highest species discrimination (~81%) followed by ITS2 (~72%) and rbcL (~44%). Despite the low number of plant taxa in the Canadian Arctic, DNA barcodes had the least success in discriminating species from this biogeographic region with resolution ranging from 36% with rbcL to 69% with matK. Species resolution was higher in the other settings, peaking in the Woodland region at 52% for rbcL and 87% for matK. Our results indicate that DNA barcoding is very effective in identifying Canadian plants to a genus, and that it performs well in discriminating species in regions where floristic diversity is highest.


Subject(s)
DNA Barcoding, Taxonomic , DNA, Plant , Plants/classification , Plants/genetics , Canada , DNA, Ribosomal Spacer , Genes, Plant , Phylogeny , Sequence Analysis, DNA
4.
Appl Plant Sci ; 5(12)2017 Dec.
Article in English | MEDLINE | ID: mdl-29299394

ABSTRACT

PREMISE OF THE STUDY: Constructing complete, accurate plant DNA barcode reference libraries can be logistically challenging for large-scale floras. Here we demonstrate the promise and challenges of using herbarium collections for building a DNA barcode reference library for the vascular plant flora of Canada. METHODS: Our study examined 20,816 specimens representing 5076 of 5190 vascular plant species in Canada (98%). For 98% of the specimens, at least one of the DNA barcode regions was recovered from the plastid loci rbcL and matK and from the nuclear ITS2 region. We used beta regression to quantify the effects of age, type of preservation, and taxonomic affiliation (family) on DNA sequence recovery. RESULTS: Specimen age and method of preservation had significant effects on sequence recovery for all markers, but influenced some families more (e.g., Boraginaceae) than others (e.g., Asteraceae). DISCUSSION: Our DNA barcode library represents an unparalleled resource for metagenomic and ecological genetic research working on temperate and arctic biomes. An observed decline in sequence recovery with specimen age may be associated with poor primer matches, intragenomic variation (for ITS2), or inhibitory secondary compounds in some taxa.

5.
PLoS One ; 11(12): e0168628, 2016.
Article in English | MEDLINE | ID: mdl-27959957

ABSTRACT

[This corrects the article DOI: 10.1371/journal.pone.0156426.].

6.
PLoS One ; 11(5): e0156426, 2016.
Article in English | MEDLINE | ID: mdl-27227830

ABSTRACT

BACKGROUND: DNA-based testing has been gaining acceptance as a tool for authentication of a wide range of food products; however, its applicability for testing of herbal supplements remains contentious. METHODS: We utilized Sanger and Next-Generation Sequencing (NGS) for taxonomic authentication of fifteen herbal supplements representing three different producers from five medicinal plants: Echinacea purpurea, Valeriana officinalis, Ginkgo biloba, Hypericum perforatum and Trigonella foenum-graecum. Experimental design included three modifications of DNA extraction, two lysate dilutions, Internal Amplification Control, and multiple negative controls to exclude background contamination. Ginkgo supplements were also analyzed using HPLC-MS for the presence of active medicinal components. RESULTS: All supplements yielded DNA from multiple species, rendering Sanger sequencing results for rbcL and ITS2 regions either uninterpretable or non-reproducible between the experimental replicates. Overall, DNA from the manufacturer-listed medicinal plants was successfully detected in seven out of eight dry herb form supplements; however, low or poor DNA recovery due to degradation was observed in most plant extracts (none detected by Sanger; three out of seven-by NGS). NGS also revealed a diverse community of fungi, known to be associated with live plant material and/or the fermentation process used in the production of plant extracts. HPLC-MS testing demonstrated that Ginkgo supplements with degraded DNA contained ten key medicinal components. CONCLUSION: Quality control of herbal supplements should utilize a synergetic approach targeting both DNA and bioactive components, especially for standardized extracts with degraded DNA. The NGS workflow developed in this study enables reliable detection of plant and fungal DNA and can be utilized by manufacturers for quality assurance of raw plant materials, contamination control during the production process, and the final product. Interpretation of results should involve an interdisciplinary approach taking into account the processes involved in production of herbal supplements, as well as biocomplexity of plant-plant and plant-fungal biological interactions.


Subject(s)
DNA, Plant , High-Throughput Nucleotide Sequencing/methods , Plants, Medicinal/chemistry , Plants, Medicinal/genetics , DNA, Plant/chemistry , DNA, Plant/genetics , DNA, Plant/isolation & purification
7.
Proc Natl Acad Sci U S A ; 112(26): 8019-24, 2015 06 30.
Article in English | MEDLINE | ID: mdl-26034267

ABSTRACT

Niche partitioning facilitates species coexistence in a world of limited resources, thereby enriching biodiversity. For decades, biologists have sought to understand how diverse assemblages of large mammalian herbivores (LMH) partition food resources. Several complementary mechanisms have been identified, including differential consumption of grasses versus nongrasses and spatiotemporal stratification in use of different parts of the same plant. However, the extent to which LMH partition food-plant species is largely unknown because comprehensive species-level identification is prohibitively difficult with traditional methods. We used DNA metabarcoding to quantify diet breadth, composition, and overlap for seven abundant LMH species (six wild, one domestic) in semiarid African savanna. These species ranged from almost-exclusive grazers to almost-exclusive browsers: Grass consumption inferred from mean sequence relative read abundance (RRA) ranged from >99% (plains zebra) to <1% (dik-dik). Grass RRA was highly correlated with isotopic estimates of % grass consumption, indicating that RRA conveys reliable quantitative information about consumption. Dietary overlap was greatest between species that were similar in body size and proportional grass consumption. Nonetheless, diet composition differed between all species-even pairs of grazers matched in size, digestive physiology, and location-and dietary similarity was sometimes greater across grazing and browsing guilds than within them. Such taxonomically fine-grained diet partitioning suggests that coarse trophic categorizations may generate misleading conclusions about competition and coexistence in LMH assemblages, and that LMH diversity may be more tightly linked to plant diversity than is currently recognized.


Subject(s)
Animals, Wild/genetics , DNA Barcoding, Taxonomic , Herbivory , Africa , Animals , Animals, Wild/physiology , Biodiversity
8.
BMC Ecol ; 12: 25, 2012 Nov 28.
Article in English | MEDLINE | ID: mdl-23190419

ABSTRACT

BACKGROUND: Because arctic plant communities are highly vulnerable to climate change, shifts in their composition require rapid, accurate identifications, often for specimens that lack diagnostic floral characters. The present study examines the role that DNA barcoding can play in aiding floristic evaluations in the arctic by testing the effectiveness of the core plant barcode regions (rbcL, matK) and a supplemental ribosomal DNA (ITS2) marker for a well-studied flora near Churchill, Manitoba. RESULTS: This investigation examined 900 specimens representing 312 of the 354 species of vascular plants known from Churchill. Sequencing success was high for rbcL: 95% for fresh specimens and 85% for herbarium samples (mean age 20 years). ITS2 worked equally well for the fresh and herbarium material (89% and 88%). However, sequencing success was lower for matK, despite two rounds of PCR amplification, which reflected less effective primer binding and sensitivity to the DNA degradation (76% of fresh, 45% of herbaria samples). A species was considered as taxonomically resolved if its members showed at least one diagnostic difference from any other taxon in the study and formed a monophyletic clade. The highest species resolution (69%) was obtained by combining information from all three genes. The joint sequence information for rbcL and matK distinguished 54% of 286 species, while rbcL and ITS2 distinguished 63% of 285 species. Discrimination of species within Salix, which constituted 8% of the flora, was particularly problematic. Despite incomplete resolution, the barcode results revealed 22 misidentified herbarium specimens, and enabled the identification of field specimens which were otherwise too immature to identify. Although seven cases of ITS2 paralogy were noted in the families Cyperaceae, Juncaceae and Juncaginaceae, this intergenic spacer played an important role in resolving congeneric plant species at Churchill. CONCLUSIONS: Our results provided fast and cost-effective solution to create a comprehensive, effective DNA barcode reference library for a local flora.


Subject(s)
DNA Barcoding, Taxonomic , Gene Library , Plants/classification , DNA, Plant/genetics , Genes, Plant , High-Throughput Nucleotide Sequencing , Manitoba , Plants/genetics , Sequence Analysis, DNA
9.
Methods Mol Biol ; 858: 223-52, 2012.
Article in English | MEDLINE | ID: mdl-22684959

ABSTRACT

DNA barcoding in the land plants presents a number of challenges compared to DNA barcoding in many animal clades. The CO1 animal DNA barcode is not effective for plants. Plant species hybridize frequently, and there are many cases of recent speciation via mechanisms, such as polyploidy and breeding system transitions. Additionally, there are many life-history trait combinations, which combine to reduce the likelihood of a small number of markers effectively tracking plant species boundaries. Recent results, however, from the two chosen core plant DNA barcode regions rbcL and matK plus two supplementary regions trnH-psbA and internal transcribed spacer (ITS) (or ITS2) have demonstrated reasonable levels of species discrimination in both floristic and taxonomically focused studies. We describe sampling techniques, extraction protocols, and PCR methods for each of these two core and two supplementary plant DNA barcode regions, with extensive notes supporting their implementation for both low- and high-throughput facilities.


Subject(s)
DNA Barcoding, Taxonomic/methods , DNA, Plant/genetics , Plants/genetics , DNA, Plant/isolation & purification , Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL