Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 52016 11 25.
Article in English | MEDLINE | ID: mdl-27885988

ABSTRACT

Global disease suitability models are essential tools to inform surveillance systems and enable early detection. We present the first global suitability model of highly pathogenic avian influenza (HPAI) H5N1 and demonstrate that reliable predictions can be obtained at global scale. Best predictions are obtained using spatial predictor variables describing host distributions, rather than land use or eco-climatic spatial predictor variables, with a strong association with domestic duck and extensively raised chicken densities. Our results also support a more systematic use of spatial cross-validation in large-scale disease suitability modelling compared to standard random cross-validation that can lead to unreliable measure of extrapolation accuracy. A global suitability model of the H5 clade 2.3.4.4 viruses, a group of viruses that recently spread extensively in Asia and the US, shows in comparison a lower spatial extrapolation capacity than the HPAI H5N1 models, with a stronger association with intensively raised chicken densities and anthropogenic factors.


Subject(s)
Genotype , Influenza A Virus, H5N1 Subtype/isolation & purification , Influenza in Birds/epidemiology , Influenza in Birds/virology , Animals , Birds , Epidemiologic Methods , Forecasting , Global Health , Influenza A Virus, H5N1 Subtype/classification , Influenza A Virus, H5N1 Subtype/genetics , Models, Statistical , Molecular Epidemiology , Poultry , Spatial Analysis
2.
Sci Rep ; 6: 30316, 2016 07 25.
Article in English | MEDLINE | ID: mdl-27453195

ABSTRACT

The highly pathogenic avian influenza (HPAI) H5N1 virus has been circulating in Asia since 2003 and diversified into several genetic lineages, or clades. Although the spatial distribution of its outbreaks was extensively studied, differences in clades were never previously taken into account. We developed models to quantify associations over time and space between different HPAI H5N1 viruses from clade 1, 2.3.4 and 2.3.2 and agro-ecological factors. We found that the distribution of clades in the Mekong region from 2004 to 2013 was strongly regionalised, defining specific epidemiological zones, or epizones. Clade 1 became entrenched in the Mekong Delta and was not supplanted by newer clades, in association with a relatively higher presence of domestic ducks. In contrast, two new clades were introduced (2.3.4 and 2.3.2) in northern Viet Nam and were associated with higher chicken density and more intensive chicken production systems. We suggest that differences in poultry production systems in these different epizones may explain these associations, along with differences in introduction pressure from neighbouring countries. The different distribution patterns found at the clade level would not be otherwise apparent through analysis treating all outbreaks equally, which requires improved linking of disease outbreak records and genetic sequence data.


Subject(s)
Genotype , Influenza A Virus, H5N1 Subtype/classification , Influenza A Virus, H5N1 Subtype/genetics , Influenza in Birds/epidemiology , Influenza in Birds/virology , Spatial Analysis , Agriculture , Animals , Chickens , Disease Outbreaks , Ducks , Geography , Phylogeny , Phylogeography , Poultry Diseases/epidemiology , Poultry Diseases/virology , Socioeconomic Factors , Vietnam/epidemiology
3.
Nucleic Acids Res ; 35(Web Server issue): W433-7, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17545200

ABSTRACT

The MyHits web site (http://myhits.isb-sib.ch) is an integrated service dedicated to the analysis of protein sequences. Since its first description in 2004, both the user interface and the back end of the server were improved. A number of tools (e.g. MAFFT, Jacop, Dotlet, Jalview, ESTScan) were added or updated to improve the usability of the service. The MySQL schema and its associated API were revamped and the database engine (HitKeeper) was separated from the web interface. This paper summarizes the current status of the server, with an emphasis on the new services.


Subject(s)
Computational Biology/methods , Protein Structure, Tertiary , Sequence Analysis, Protein , Software , Computer Graphics , Databases, Protein , Internet , Programming Languages , Sequence Alignment , Systems Integration , User-Computer Interface
4.
Phys Rev E Stat Nonlin Soft Matter Phys ; 65(6 Pt 1): 061101, 2002 Jun.
Article in English | MEDLINE | ID: mdl-12188697

ABSTRACT

We consider a dilute or semidilute polymer solution with localized attracting centers near a flat phase boundary and assume it driven by both stochastic and periodic forces. The attracting inhomogeneities restrict the free motion of macromolecules and play the role of fixed pinning centers. The flat boundary is modeled by a bistable potential whose minima attract the movable polymer segments between neighboring pinning points. We study the motion of these segments. The stochastic forces lead to stochastic oscillations of the polymer parts between the two potential wells near the phase boundary. Application of a small temporal periodic force can synchronize these oscillations and leads to the phenomenon of stochastic resonance for a nonvanishing noise intensity. As an outcome of our theory in agreement with numerical simulations, the resonance is stronger for wider and/or less deep potentials and observed at smaller values of the noise intensity. Additionally, we discuss under what conditions doubly stochastic resonance of the macromolecular motion occurs, that is, if bistability of the potential near the boundary originates in the action of multiplicative noise.

SELECTION OF CITATIONS
SEARCH DETAIL