Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(8): e29384, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38644809

ABSTRACT

Phase evolution and strengthening of the FeNiCoCrMo0.5Al1.3 powder alloy produced via inert gas atomization and annealed in the temperature interval of 300-800 °C have been studied by X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy, and microhardness testing. It was found that annealing at 300-600 °C leads to an increase of the element segregations between the several solid solutions with a rise of the lattice misfit (ε) to 1.5 % and microhardness growth to 1070 HV. It was assumed that elastic stress caused by the element partitioning is the main strengthening mechanism: microhardness rises linearly with misfit rise with dHV/dε = 43400 MPa. Sigma arises after the maximum elastic deformation (in 1.5 %) was reached. Formation of the dispersed coherent sigma phase in the annealing interval 600-800 °C results in the microhardness rise. Oxidation that began at 800 °C in 27 h is accompanied with FCC formation due to a depletion of the B2 in Al caused by Al2O3 formation. Estimation of the activation energy of the initial stage of the solid solution decomposition gives a very low value in 0.65eV, apparently caused by the high concentration of quenched vacancies. The activation energy of sigma formation approximately coincides with the activation energy of self-diffusion in BCC metals (about 2.60 eV).

2.
bioRxiv ; 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38659893

ABSTRACT

The Yamnaya archaeological complex appeared around 3300BCE across the steppes north of the Black and Caspian Seas, and by 3000BCE reached its maximal extent from Hungary in the west to Kazakhstan in the east. To localize the ancestral and geographical origins of the Yamnaya among the diverse Eneolithic people that preceded them, we studied ancient DNA data from 428 individuals of which 299 are reported for the first time, demonstrating three previously unknown Eneolithic genetic clines. First, a "Caucasus-Lower Volga" (CLV) Cline suffused with Caucasus hunter-gatherer (CHG) ancestry extended between a Caucasus Neolithic southern end in Neolithic Armenia, and a steppe northern end in Berezhnovka in the Lower Volga. Bidirectional gene flow across the CLV cline created admixed intermediate populations in both the north Caucasus, such as the Maikop people, and on the steppe, such as those at the site of Remontnoye north of the Manych depression. CLV people also helped form two major riverine clines by admixing with distinct groups of European hunter-gatherers. A "Volga Cline" was formed as Lower Volga people mixed with upriver populations that had more Eastern hunter-gatherer (EHG) ancestry, creating genetically hyper-variable populations as at Khvalynsk in the Middle Volga. A "Dnipro Cline" was formed as CLV people bearing both Caucasus Neolithic and Lower Volga ancestry moved west and acquired Ukraine Neolithic hunter-gatherer (UNHG) ancestry to establish the population of the Serednii Stih culture from which the direct ancestors of the Yamnaya themselves were formed around 4000BCE. This population grew rapidly after 3750-3350BCE, precipitating the expansion of people of the Yamnaya culture who totally displaced previous groups on the Volga and further east, while admixing with more sedentary groups in the west. CLV cline people with Lower Volga ancestry contributed four fifths of the ancestry of the Yamnaya, but also, entering Anatolia from the east, contributed at least a tenth of the ancestry of Bronze Age Central Anatolians, where the Hittite language, related to the Indo-European languages spread by the Yamnaya, was spoken. We thus propose that the final unity of the speakers of the "Proto-Indo-Anatolian" ancestral language of both Anatolian and Indo-European languages can be traced to CLV cline people sometime between 4400-4000 BCE.

3.
Materials (Basel) ; 14(24)2021 Dec 19.
Article in English | MEDLINE | ID: mdl-34947464

ABSTRACT

In the present study, powder of FeCoCrNiMo0.5Al1.3 HEA was manufactured by gas atomization process, and then used for laser powder bed fusion (L-PBF) and microplasma spraying (MPS) technologies. The processes of phase composition and microstructure transformation during above mentioned processes and subsequent heat treatment were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and differential thermal analysis (DTA) methods. It was found that gas atomization leads to a formation of dendrites of body centered cubic (BCC) supersaturated solid solution with insignificant Mo-rich segregations on the peripheries of the dendrites. Annealing leads to an increase of element segregations till to decomposition of the BCC solid solution and formation of σ-phase and B2 phase. Microstructure and phase composition of L-PBF sample are very similar to those of the powder. The MPS coating has a little fraction of face centered cubic (FCC) phase because of Al oxidation during spraying and formation of regions depleted in Al, in which FCC structure becomes more stable. Maximum hardness (950 HV) is achieved in the powder and L-PBF samples after annealing at 600 °C. Elastic modulus of the L-PBF sample, determined by nanoindentation, is 165 GPa, that is 12% lower than that of the cast alloy (186 GPa).

4.
Nature ; 598(7882): 629-633, 2021 10.
Article in English | MEDLINE | ID: mdl-34526723

ABSTRACT

During the Early Bronze Age, populations of the western Eurasian steppe expanded across an immense area of northern Eurasia. Combined archaeological and genetic evidence supports widespread Early Bronze Age population movements out of the Pontic-Caspian steppe that resulted in gene flow across vast distances, linking populations of Yamnaya pastoralists in Scandinavia with pastoral populations (known as the Afanasievo) far to the east in the Altai Mountains1,2 and Mongolia3. Although some models hold that this expansion was the outcome of a newly mobile pastoral economy characterized by horse traction, bulk wagon transport4-6 and regular dietary dependence on meat and milk5, hard evidence for these economic features has not been found. Here we draw on proteomic analysis of dental calculus from individuals from the western Eurasian steppe to demonstrate a major transition in dairying at the start of the Bronze Age. The rapid onset of ubiquitous dairying at a point in time when steppe populations are known to have begun dispersing offers critical insight into a key catalyst of steppe mobility. The identification of horse milk proteins also indicates horse domestication by the Early Bronze Age, which provides support for its role in steppe dispersals. Our results point to a potential epicentre for horse domestication in the Pontic-Caspian steppe by the third millennium BC, and offer strong support for the notion that the novel exploitation of secondary animal products was a key driver of the expansions of Eurasian steppe pastoralists by the Early Bronze Age.


Subject(s)
Dairying/history , Human Migration , Proteome , Animals , Archaeology , Asia , Dental Calculus/metabolism , Domestication , Europe , Gene Flow , Grassland , History, Ancient , Horses , Humans , Milk
5.
Polymers (Basel) ; 13(12)2021 Jun 09.
Article in English | MEDLINE | ID: mdl-34207774

ABSTRACT

Bacterial nanocellulose (BNC) is a unique product of microbiological synthesis, having a lot of applications among which the most important is biomedicine. Objective complexities in scaling up the biosynthesis of BNC are associated with the nature of microbial producers for which BNC is not the target metabolite, therefore biosynthesis lasts long, with the BNC yield being small. Thus, the BNC scale-up problem has not yet been overcome. Here we performed biosynthesis of three scaled sheets of BNC (each having a surface area of 29,400 cm2, a container volume of 441 L, and a nutrient medium volume of 260 L and characterized them. The static biosynthesis of BNC in a semisynthetic nutrient medium was scaled up using the Medusomyces gisevii Sa-12 symbiotic culture. The experiment was run in duplicate. The BNC pellicle was removed once from the nutrient medium in the first experiment and twice in the second experiment, in which case the inoculum and glucose were not additionally added to the medium. The resultant BNC sheets were characterized by scanning electron microscopy, capillary viscosimetry, infrared spectroscopy, thermomechanical and thermogravimetric analyses. When the nutrient medium was scaled up from 0.1 to 260 L, the elastic modulus of BNC samples increased tenfold and the degree of polymerization 2.5-fold. Besides, we demonstrated that scaled BNC sheets could be removed at least twice from one volume of the nutrient medium, with the yield and quality of BNC remaining the same. Consequently, the world's largest BNC sheets 210 cm long and 140 cm wide, having a surface area of 29,400 cm2 each (weighing 16.24 to 17.04 kg), have been obtained in which an adult with burns or vast wounds can easily be wrapped. The resultant sheets exhibit a typical architecture of cellulosic fibers that form a spatial 3D structure which refers to individual and extremely important characteristics of BNC. Here we thus demonstrated the scale-up of biosynthesis of BNC with improved properties, and this result was achieved by using the symbiotic culture.

6.
Nature ; 528(7583): 499-503, 2015 Dec 24.
Article in English | MEDLINE | ID: mdl-26595274

ABSTRACT

Ancient DNA makes it possible to observe natural selection directly by analysing samples from populations before, during and after adaptation events. Here we report a genome-wide scan for selection using ancient DNA, capitalizing on the largest ancient DNA data set yet assembled: 230 West Eurasians who lived between 6500 and 300 bc, including 163 with newly reported data. The new samples include, to our knowledge, the first genome-wide ancient DNA from Anatolian Neolithic farmers, whose genetic material we obtained by extracting from petrous bones, and who we show were members of the population that was the source of Europe's first farmers. We also report a transect of the steppe region in Samara between 5600 and 300 bc, which allows us to identify admixture into the steppe from at least two external sources. We detect selection at loci associated with diet, pigmentation and immunity, and two independent episodes of selection on height.


Subject(s)
Genome, Human/genetics , Selection, Genetic/genetics , Agriculture/history , Asia/ethnology , Body Height/genetics , Bone and Bones , DNA/genetics , DNA/isolation & purification , Diet/history , Europe/ethnology , Genetics, Population , Haplotypes/genetics , History, Ancient , Humans , Immunity/genetics , Male , Multifactorial Inheritance/genetics , Pigmentation/genetics , Sequence Analysis, DNA
7.
Nature ; 522(7555): 207-11, 2015 Jun 11.
Article in English | MEDLINE | ID: mdl-25731166

ABSTRACT

We generated genome-wide data from 69 Europeans who lived between 8,000-3,000 years ago by enriching ancient DNA libraries for a target set of almost 400,000 polymorphisms. Enrichment of these positions decreases the sequencing required for genome-wide ancient DNA analysis by a median of around 250-fold, allowing us to study an order of magnitude more individuals than previous studies and to obtain new insights about the past. We show that the populations of Western and Far Eastern Europe followed opposite trajectories between 8,000-5,000 years ago. At the beginning of the Neolithic period in Europe, ∼8,000-7,000 years ago, closely related groups of early farmers appeared in Germany, Hungary and Spain, different from indigenous hunter-gatherers, whereas Russia was inhabited by a distinctive population of hunter-gatherers with high affinity to a ∼24,000-year-old Siberian. By ∼6,000-5,000 years ago, farmers throughout much of Europe had more hunter-gatherer ancestry than their predecessors, but in Russia, the Yamnaya steppe herders of this time were descended not only from the preceding eastern European hunter-gatherers, but also from a population of Near Eastern ancestry. Western and Eastern Europe came into contact ∼4,500 years ago, as the Late Neolithic Corded Ware people from Germany traced ∼75% of their ancestry to the Yamnaya, documenting a massive migration into the heartland of Europe from its eastern periphery. This steppe ancestry persisted in all sampled central Europeans until at least ∼3,000 years ago, and is ubiquitous in present-day Europeans. These results provide support for a steppe origin of at least some of the Indo-European languages of Europe.


Subject(s)
Cultural Evolution/history , Grassland , Human Migration/history , Language/history , Europe/ethnology , Genome, Human/genetics , History, Ancient , Humans , Male , Polymorphism, Genetic/genetics , Population Dynamics , Russia
SELECTION OF CITATIONS
SEARCH DETAIL
...