Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Cancer Res Commun ; 3(7): 1378-1396, 2023 07.
Article in English | MEDLINE | ID: mdl-37520743

ABSTRACT

The pro-oncogenic activities of estrogen receptor alpha (ERα) drive breast cancer pathogenesis. Endocrine therapies that impair the production of estrogen or the action of the ERα are therefore used to prevent primary disease metastasis. Although recent successes with ERα degraders have been reported, there is still the need to develop further ERα antagonists with additional properties for breast cancer therapy. We have previously described a benzothiazole compound A4B17 that inhibits the proliferation of androgen receptor-positive prostate cancer cells by disrupting the interaction of the cochaperone BAG1 with the AR. A4B17 was also found to inhibit the proliferation of estrogen receptor-positive (ER+) breast cancer cells. Using a scaffold hopping approach, we report here a group of small molecules with imidazopyridine scaffolds that are more potent and efficacious than A4B17. The prototype molecule X15695 efficiently degraded ERα and attenuated estrogen-mediated target gene expression as well as transactivation by the AR. X15695 also disrupted key cellular protein-protein interactions such as BAG1-mortalin (GRP75) interaction as well as wild-type p53-mortalin or mutant p53-BAG2 interactions. These activities together reactivated p53 and resulted in cell-cycle block and the induction of apoptosis. When administered orally to in vivo tumor xenograft models, X15695 potently inhibited the growth of breast tumor cells but less efficiently the growth of prostate tumor cells. We therefore identify X15695 as an oral selective ER degrader and propose further development of this compound for therapy of ER+ breast cancers. Significance: An imidazopyridine that selectively degrades ERα and is orally bioavailable has been identified for the development of ER+ breast cancer therapeutics. This compound also activates wild-type p53 and disrupts the gain-of-function tumorigenic activity of mutant p53, resulting in cell-cycle arrest and the induction of apoptosis.


Subject(s)
Breast Neoplasms , Estrogen Antagonists , Female , Humans , Breast Neoplasms/drug therapy , Estrogen Antagonists/pharmacology , Estrogen Receptor alpha/genetics , Estrogens , Receptors, Estrogen/genetics , Tumor Suppressor Protein p53/genetics
2.
iScience ; 25(5): 104175, 2022 May 20.
Article in English | MEDLINE | ID: mdl-35479411

ABSTRACT

BAG1 is a family of polypeptides with a conserved C-terminal BAG domain that functions as a nucleotide exchange factor for the molecular chaperone HSP70. BAG1 proteins also control several signaling processes including proteostasis, apoptosis, and transcription. The largest isoform, BAG1L, controls the activity of the androgen receptor (AR) and is upregulated in prostate cancer. Here, we show that BAG1L regulates AR dynamics in the nucleus and its ablation attenuates AR target gene expression especially those involved in oxidative stress and metabolism. We show that a small molecule, A4B17, that targets the BAG domain downregulates AR target genes similar to a complete BAG1L knockout and upregulates the expression of oxidative stress-induced genes involved in cell death. Furthermore, A4B17 outperformed the clinically approved antagonist enzalutamide in inhibiting cell proliferation and prostate tumor development in a mouse xenograft model. BAG1 inhibitors therefore offer unique opportunities for antagonizing AR action and prostate cancer growth.

3.
ACS Chem Biol ; 16(11): 2103-2108, 2021 11 19.
Article in English | MEDLINE | ID: mdl-34506104

ABSTRACT

All current clinically approved androgen deprivation therapies for prostate cancer target the C-terminal ligand-binding domain of the androgen receptor (AR). However, the main transactivation function of the receptor is localized at the AR N-terminal domain (NTD). Targeting the AR NTD directly is a challenge because of its intrinsically disordered structure and the lack of pockets for drugs to bind. Here, we have taken an alternative approach using the cochaperone BAG1L, which interacts with the NTD, to develop a novel AR inhibitor. We describe the identification of 2-(4-fluorophenyl)-5-(trifluoromethyl)-1,3-benzothiazole (A4B17), a small molecule that inhibits BAG1L-AR NTD interaction, attenuates BAG1L-mediated AR NTD activity, downregulates AR target gene expression, and inhibits proliferation of AR-positive prostate cancer cells. This compound represents a prototype of AR antagonists that could be key in the development of future prostate cancer therapeutics.


Subject(s)
Androgen Receptor Antagonists/pharmacology , Antineoplastic Agents/pharmacology , Benzothiazoles/pharmacology , Prostatic Neoplasms/drug therapy , Receptors, Androgen/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , DNA-Binding Proteins/metabolism , Down-Regulation/drug effects , Humans , Male , Prostatic Neoplasms/metabolism , Protein Binding/drug effects , Protein Domains , Receptors, Androgen/chemistry , Transcription Factors/metabolism
4.
J Mol Endocrinol ; 62(4): R289-R299, 2019 05.
Article in English | MEDLINE | ID: mdl-30913537

ABSTRACT

Androgens are important determinants of normal and malignant prostate growth. They function by binding to the C-terminal ligand-binding domain (LBD) of the androgen receptor (AR). All clinically approved AR-targeting antiandrogens for prostate cancer therapy function by competing with endogenous androgens. Despite initial robust responses to androgen deprivation therapy, nearly all patients with advanced prostate cancer relapse with lethal castration-resistant prostate cancer (CRPC). Progression to CRPC is associated with ongoing AR signaling, which in part, is due to the expression of constitutively active AR splice variants that contain the N-terminus of the receptor but lack the C-terminus. Currently, there are no approved therapies specifically targeting the AR N-terminus. Current pharmacologic targeting strategies for inhibiting the AR N-terminal region have proven difficult, due to its intrinsically unstructured nature and lack of enzymatic activity. An alternative approach is to target key molecules such as the cochaperone BAG1L that bind to and enhance the activity of the AR AF1. Here, we review recent literature that suggest Bag-1L is a promising target for AR-positive prostate cancer.


Subject(s)
Biomarkers, Tumor , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Prostatic Neoplasms/etiology , Prostatic Neoplasms/metabolism , Receptors, Androgen/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , DNA-Binding Proteins/antagonists & inhibitors , DNA-Binding Proteins/chemistry , Disease Susceptibility , Humans , Male , Molecular Chaperones/chemistry , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Molecular Targeted Therapy , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/etiology , Prostatic Neoplasms, Castration-Resistant/metabolism , Prostatic Neoplasms, Castration-Resistant/pathology , Protein Binding , Protein Interaction Domains and Motifs , Receptors, Cytoplasmic and Nuclear/metabolism , Signal Transduction , Transcription Factors/antagonists & inhibitors , Transcription Factors/chemistry
5.
Cancer Cell ; 35(3): 401-413.e6, 2019 03 18.
Article in English | MEDLINE | ID: mdl-30773341

ABSTRACT

Androgen deprivation therapy for prostate cancer (PCa) benefits patients with early disease, but becomes ineffective as PCa progresses to a castration-resistant state (CRPC). Initially CRPC remains dependent on androgen receptor (AR) signaling, often through increased expression of full-length AR (ARfl) or expression of dominantly active splice variants such as ARv7. We show in ARv7-dependent CRPC models that ARv7 binds together with ARfl to repress transcription of a set of growth-suppressive genes. Expression of the ARv7-repressed targets and ARv7 protein expression are negatively correlated and predicts for outcome in PCa patients. Our results provide insights into the role of ARv7 in CRPC and define a set of potential biomarkers for tumors dependent on ARv7.


Subject(s)
Alternative Splicing , Prostatic Neoplasms, Castration-Resistant/genetics , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation, Neoplastic , Humans , Male , Prostatic Neoplasms, Castration-Resistant/metabolism , Tissue Array Analysis , Transcription, Genetic
6.
Elife ; 62017 08 10.
Article in English | MEDLINE | ID: mdl-28826504

ABSTRACT

Targeting the activation function-1 (AF-1) domain located in the N-terminus of the androgen receptor (AR) is an attractive therapeutic alternative to the current approaches to inhibit AR action in prostate cancer (PCa). Here we show that the AR AF-1 is bound by the cochaperone Bag-1L. Mutations in the AR interaction domain or loss of Bag-1L abrogate AR signaling and reduce PCa growth. Clinically, Bag-1L protein levels increase with progression to castration-resistant PCa (CRPC) and high levels of Bag-1L in primary PCa associate with a reduced clinical benefit from abiraterone when these tumors progress. Intriguingly, residues in Bag-1L important for its interaction with the AR AF-1 are within a potentially druggable pocket, implicating Bag-1L as a potential therapeutic target in PCa.


Subject(s)
Androgen Receptor Antagonists/metabolism , DNA-Binding Proteins/antagonists & inhibitors , DNA-Binding Proteins/metabolism , Prostatic Neoplasms/pathology , Receptors, Androgen/metabolism , Transcription Factors/antagonists & inhibitors , Transcription Factors/metabolism , Humans , Male , Prostatic Neoplasms/therapy , Protein Binding , Protein Interaction Maps
SELECTION OF CITATIONS
SEARCH DETAIL