Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Anim Microbiome ; 3(1): 12, 2021 Jan 21.
Article in English | MEDLINE | ID: mdl-33499997

ABSTRACT

BACKGROUND: Across taxa, animals with depleted intestinal microbiomes show disrupted behavioral phenotypes. Axenic (i.e., microbe-free) mice, zebrafish, and fruit flies exhibit increased locomotor behavior, or hyperactivity. The mechanism through which bacteria interact with host cells to trigger normal neurobehavioral development in larval zebrafish is not well understood. Here, we monoassociated zebrafish with either one of six different zebrafish-associated bacteria, mixtures of these host-associates, or with an environmental bacterial isolate. RESULTS: As predicted, the axenic cohort was hyperactive. Monoassociation with three different host-associated bacterial species, as well as with the mixtures, resulted in control-like locomotor behavior. Monoassociation with one host-associate and the environmental isolate resulted in the hyperactive phenotype characteristic of axenic larvae, while monoassociation with two other host-associated bacteria partially blocked this phenotype. Furthermore, we found an inverse relationship between the total concentration of bacteria per larvae and locomotor behavior. Lastly, in the axenic and associated cohorts, but not in the larvae with complex communities, we detected unexpected bacteria, some of which may be present as facultative predators. CONCLUSIONS: These data support a growing body of evidence that individual species of bacteria can have different effects on host behavior, potentially related to their success at intestinal colonization. Specific to the zebrafish model, our results suggest that differences in the composition of microbes in fish facilities could affect the results of behavioral assays within pharmacological and toxicological studies.

2.
Toxicol Sci ; 167(2): 468-483, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30321396

ABSTRACT

Host-associated microbiota can biotransform xenobiotics, mediate health effects of chemical exposure, and play important roles in early development. Bisphenol A (BPA) is a widespread environmental chemical that has been associated with adverse endocrine and neurodevelopmental effects, some of which may be mediated by microbiota. Growing public concern over the safety of BPA has resulted in its replacement with structurally similar alternatives. In this study, we evaluated whether BPA and BPA alternatives alter microbiota and modulate secondary adverse behavioral effects in zebrafish. Zebrafish were developmentally exposed to BPA, Bisphenol AF (BPAF), Bisphenol B (BPB), Bisphenol F (BPF), or Bisphenol S (BPS). At 10 days post fertilization (dpf), toxicity assessments were completed and 16S rRNA gene sequencing was performed to evaluate potential chemical-dependent shifts in microbial community structure and predicted function. A standard light/dark behavioral assay was used to assess locomotor activity. Based on developmental toxicity assessments at 10 dpf, a range of potencies was observed: BPAF > BPB > BPF ∼ BPA > BPS. Analysis of 16S rRNA gene sequencing data showed significant concentration-dependent disruption of microbial community structure and enrichment of putative microbial functions with exposure to BPS, BPA, or BPF, but not BPB or BPAF. Interestingly, microbial disruption was inversely related to host developmental toxicity and estrogenicity. Exposure to BP analogs did not cause behavioral effects at 10 dpf. Our findings indicate that some BP analogs disrupt host microbiota early in life and demonstrate novel chemical-microbiota interactions that may add important context to current hazard identification strategies.


Subject(s)
Benzhydryl Compounds/toxicity , Environmental Pollutants/toxicity , Larva/drug effects , Microbiota/drug effects , Phenols/toxicity , Zebrafish/growth & development , Animals , Behavior, Animal/drug effects , Benzhydryl Compounds/chemistry , Dose-Response Relationship, Drug , Environmental Pollutants/chemistry , Larva/microbiology , Microbiota/genetics , Phenols/chemistry , RNA, Ribosomal, 16S , Structure-Activity Relationship , Zebrafish/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...