Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
NPJ Breast Cancer ; 9(1): 59, 2023 Jul 13.
Article in English | MEDLINE | ID: mdl-37443146

ABSTRACT

Triple-negative breast cancer (TNBC) is a highly aggressive and metastatic cancer subtype, which is generally untreatable once it metastasizes. We hypothesized that interfering with the Receptor for Advanced Glycation End-products (RAGE) signaling with the small molecule RAGE inhibitors (TTP488/Azeliragon and FPS-ZM1) would impair TNBC metastasis and impair fundamental mechanisms underlying tumor progression and metastasis. Both TTP488 and FPS-ZM1 impaired spontaneous and experimental metastasis of TNBC models, with TTP488 reducing metastasis to a greater degree than FPS-ZM1. Transcriptomic analysis of primary xenograft tumor and metastatic tissue revealed high concordance in gene and protein changes with both drugs, with TTP488 showing greater potency against metastatic driver pathways. Phenotypic validation of transcriptomic analysis by functional cell assays revealed that RAGE inhibition impaired TNBC cell adhesion to multiple extracellular matrix proteins (including collagens, laminins, and fibronectin), migration, and invasion. Neither RAGE inhibitor impaired cellular viability, proliferation, or cell cycle in vitro. Proteomic analysis of serum from tumor-bearing mice revealed RAGE inhibition affected metastatic driver mechanisms, including multiple cytokines and growth factors. Further mechanistic studies by phospho-proteomic analysis of tumors revealed RAGE inhibition led to decreased signaling through critical BC metastatic driver mechanisms, including Pyk2, STAT3, and Akt. These results show that TTP488 impairs metastasis of TNBC and further clarifies the signaling and cellular mechanisms through which RAGE mediates metastasis. Importantly, as TTP488 displays a favorable safety profile in human studies, our study provides the rationale for evaluating TTP488 in clinical trials to treat or prevent metastatic TNBC.

2.
J Cancer ; 13(6): 1933-1944, 2022.
Article in English | MEDLINE | ID: mdl-35399717

ABSTRACT

In this study, we evaluated the ability of negatively charged bio-degradable nanoparticles, ONP- 302, to inhibit tumor growth. Therapeutic treatment with ONP-302 in vivo resulted in a marked delay in tumor growth in three different syngeneic tumor models in immunocompetent mice. ONP- 302 efficacy persisted with depletion of CD8+ T cells in immunocompetent mice and also was effective in immune deficient mice. Examination of ONP-302 effects on components of the tumor microenvironment (TME) were explored. ONP-302 treatment caused a gene expression shift in TAMs toward the pro-inflammatory M1 type and substantially inhibited the expression of genes associated with the pro-tumorigenic function of CAFs. ONP-302 also induced apoptosis in CAFs in the TME. Together, these data support further development of ONP-302 as a novel first-in- class anti-cancer therapeutic that can be used as a single-agent as well as in combination therapies for the treatment of solid tumors due to its ability to modulate the TME.

3.
Cell Rep ; 33(13): 108571, 2020 12 29.
Article in English | MEDLINE | ID: mdl-33378668

ABSTRACT

Here, we report that functional heterogeneity of macrophages in cancer could be determined by the nature of their precursors: monocytes (Mons) and monocytic myeloid-derived suppressor cells (M-MDSCs). Macrophages that are differentiated from M-MDSCs, but not from Mons, are immune suppressive, with a genomic profile matching that of M-MDSCs. Immune-suppressive activity of M-MDSC-derived macrophages is dependent on the persistent expression of S100A9 protein in these cells. S100A9 also promotes M2 polarization of macrophages. Tissue-resident- and Mon-derived macrophages lack expression of this protein. S100A9-dependent immune-suppressive activity of macrophages involves transcription factor C/EBPß. The presence of S100A9-positive macrophages in tumor tissues is associated with shorter survival in patients with head and neck cancer and poor response to PD-1 antibody treatment in patients with metastatic melanoma. Thus, this study reveals the pathway of the development of immune-suppressive macrophages and suggests an approach to their selective targeting.


Subject(s)
CCAAT-Enhancer-Binding Proteins/metabolism , Calgranulin A/physiology , Calgranulin B/physiology , Immunosuppression Therapy , Macrophages/metabolism , Monocytes/metabolism , Myeloid-Derived Suppressor Cells/metabolism , Adult , Aged , Aged, 80 and over , Animals , CCAAT-Enhancer-Binding Proteins/genetics , Cell Line, Tumor , Female , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Microarray Analysis , Middle Aged , Myeloid-Derived Suppressor Cells/immunology , Tumor Microenvironment
4.
Clin Cancer Res ; 25(9): 2783-2794, 2019 May 01.
Article in English | MEDLINE | ID: mdl-30765391

ABSTRACT

PURPOSE: BRAF and MEK inhibitors (BRAFi and MEKi) are actively used for the treatment of metastatic melanoma in patients with BRAFV600E mutation in their tumors. However, the development of resistance to BRAFi and MEKi remains a difficult clinical challenge with limited therapeutic options available to these patients. In this study, we investigated the mechanism and potential therapeutic utility of combination BRAFi and adoptive T-cell therapy (ACT) in melanoma resistant to BRAFi. EXPERIMENTAL DESIGN: Investigations were performed in vitro and in vivo with various human melanoma cell lines sensitive and resistant to BRAFi as well as patient-derived xenografts (PDX) derived from patients. In addition, samples were evaluated from patients on a clinical trial of BRAFi in combination with ACT. RESULTS: Herein we report that in human melanoma cell lines, senstitive and resistant to BRAFi and in PDX from patients who progressed on BRAFi and MEKi therapy, BRAFi caused transient upregulation of mannose-6-phosphate receptor (M6PR). This sensitized tumor cells to CTLs via uptake of granzyme B, a main component of the cytotoxic activity of CTLs. Treatment of mice bearing resistant tumors with BRAFi enhanced the antitumor effect of patients' TILs. A pilot clinical trial of 16 patients with metastatic melanoma who were treated with the BRAFi vemurafenib followed by therapy with TILs demonstrated a significant increase of M6PR expression on tumors during vemurafenib treatment. CONCLUSIONS: BRAF-targeted therapy sensitized resistant melanoma cells to CTLs, which opens new therapeutic opportunities for the treatment of patients with BRAF-resistant disease.See related commentary by Goff and Rosenberg, p. 2682.


Subject(s)
Melanoma , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Animals , Drug Resistance, Neoplasm/drug effects , Humans , Mice , Protein Kinase Inhibitors , T-Lymphocytes
5.
Cancer ; 125(10): 1717-1725, 2019 05 15.
Article in English | MEDLINE | ID: mdl-30633331

ABSTRACT

BACKGROUND: Women with breast cancer (BCa) experience heightened distress, which is related to greater inflammation and poorer outcomes. The s100 protein family facilitates the inflammatory response by regulating myeloid cell function through the binding of Toll-like receptor 4 and the receptor for advanced glycation end products (RAGE). The heterodimer s100A8/A9 RAGE ligand is associated with hastened tumor development and metastasis. Previously, a 10-week stress-management intervention using cognitive behavioral therapy (CBT) and relaxation training (RT) was associated with less leukocyte inflammatory gene expression in patients with BCa; however, its impact on s100A8/A9 was not examined. Because a 10-week intervention may be impractical during primary treatment for BCa, the authors developed briefer forms of CBT and RT and demonstrated their efficacy in reducing distress over 12 months of primary treatment. Here, the effects of these briefer interventions were tested effects on s100A8/A9 levels over the initial 12 months of BCa treatment. METHODS: Postsurgical patients with BCa (stage 0-IIIB) were randomized to a 5-week, group-based condition: CBT, RT, or health education control (HE). At baseline and at 12 months, women provided sera from which s100A8/A9 levels were determined using any enzyme-linked immunosorbent assay. RESULTS: Participants (mean age ± standard deviation, 54.81 ± 9.63 years) who were assigned to either CBT (n = 41) or RT (n = 38) had significant s100A8/A9 decreases over 12 months compared with those who were assigned to HE (n = 44; F[1,114]  = 4.500; P = .036) controlling for age, stage, time since surgery, and receipt of chemotherapy or radiation. Greater increases in stress-management skills from preintervention to postintervention predicted greater reductions in s100A8/A9 levels over 12 months (ß = -0.379; t[101]  = -4.056; P < .001). CONCLUSIONS: Brief, postsurgical, group-based stress management reduces RAGE-associated s100A8/A9 ligand levels during primary treatment for BCa.


Subject(s)
Breast Neoplasms/genetics , Calgranulin A/metabolism , Calgranulin B/metabolism , Cognitive Behavioral Therapy/methods , Relaxation Therapy/methods , Stress, Psychological/therapy , Aged , Analysis of Variance , Breast Neoplasms/diagnosis , Breast Neoplasms/psychology , Breast Neoplasms/surgery , Enzyme-Linked Immunosorbent Assay , Female , Follow-Up Studies , Humans , Inflammation Mediators/metabolism , Middle Aged , Reference Values , Stress, Psychological/diagnosis , Treatment Outcome
6.
J Biol Chem ; 291(23): 12057-73, 2016 Jun 03.
Article in English | MEDLINE | ID: mdl-27022018

ABSTRACT

The receptor for advanced glycation end products (RAGE) is a multiligand transmembrane receptor that can undergo proteolysis at the cell surface to release a soluble ectodomain. Here we observed that ectodomain shedding of RAGE is critical for its role in regulating signaling and cellular function. Ectodomain shedding of both human and mouse RAGE was dependent on ADAM10 activity and induced with chemical activators of shedding (ionomycin, phorbol 12-myristate 13-acetate, and 4-aminophenylmercuric acetate) and endogenous stimuli (serum and RAGE ligands). Ectopic expression of the splice variant of RAGE (RAGE splice variant 4), which is resistant to ectodomain shedding, inhibited RAGE ligand dependent cell signaling, actin cytoskeleton reorganization, cell spreading, and cell migration. We found that blockade of RAGE ligand signaling with soluble RAGE or inhibitors of MAPK or PI3K blocked RAGE-dependent cell migration but did not affect RAGE splice variant 4 cell migration. We finally demonstrated that RAGE function is dependent on secretase activity as ADAM10 and γ-secretase inhibitors blocked RAGE ligand-mediated cell migration. Together, our data suggest that proteolysis of RAGE is critical to mediate signaling and cell function and may therefore emerge as a novel therapeutic target for RAGE-dependent disease states.


Subject(s)
Cell Movement/physiology , Cell Physiological Phenomena/physiology , Receptor for Advanced Glycation End Products/metabolism , Signal Transduction/physiology , ADAM10 Protein/metabolism , Amino Acid Sequence , Amyloid Precursor Protein Secretases/metabolism , Animals , Binding Sites/genetics , Blotting, Western , Cell Line, Tumor , Cell Movement/drug effects , Cell Movement/genetics , Cell Physiological Phenomena/drug effects , Cell Physiological Phenomena/genetics , HEK293 Cells , Humans , Ionomycin/pharmacology , Metalloproteases/metabolism , Mice , Mutation , Protein Isoforms/genetics , Protein Isoforms/metabolism , Proteolysis/drug effects , Receptor for Advanced Glycation End Products/genetics , Sequence Homology, Amino Acid , Signal Transduction/drug effects , Signal Transduction/genetics , Tetradecanoylphorbol Acetate/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...