Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Autism Res ; 16(3): 502-523, 2023 03.
Article in English | MEDLINE | ID: mdl-36609850

ABSTRACT

Oxytocin (OT), the brain's most abundant neuropeptide, plays an important role in social salience and motivation. Clinical trials of the efficacy of OT in autism spectrum disorder (ASD) have reported mixed results due in part to ASD's complex etiology. We investigated whether genetic and epigenetic variation contribute to variable endogenous OT levels that modulate sensitivity to OT therapy. To carry out this analysis, we integrated genome-wide profiles of DNA-methylation, transcriptional activity, and genetic variation with plasma OT levels in 290 participants with ASD enrolled in a randomized controlled trial of OT. Our analysis identified genetic variants with novel association with plasma OT, several of which reside in known ASD risk genes. We also show subtle but statistically significant association of plasma OT levels with peripheral transcriptional activity and DNA-methylation profiles across several annotated gene sets. These findings broaden our understanding of the effects of the peripheral oxytocin system and provide novel genetic candidates for future studies to decode the complex etiology of ASD and its interaction with OT signaling and OT-based interventions. LAY SUMMARY: Oxytocin (OT) is an abundant chemical produced by neurons that plays an important role in social interaction and motivation. We investigated whether genetic and epigenetic factors contribute to variable OT levels in the blood. To this, we integrated genetic, gene expression, and non-DNA regulated (epigenetic) signatures with blood OT levels in 290 participants with autism enrolled in an OT clinical trial. We identified genetic association with plasma OT, several of which reside in known autism risk genes. We also show statistically significant association of plasma OT levels with gene expression and epigenetic across several gene pathways. These findings broaden our understanding of the factors that influence OT levels in the blood for future studies to decode the complex presentation of autism and its interaction with OT and OT-based treatment.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Humans , Child , Adolescent , Autism Spectrum Disorder/metabolism , Oxytocin , Autistic Disorder/genetics , DNA Methylation/genetics , Epigenesis, Genetic
2.
Circulation ; 146(11): 808-818, 2022 09 13.
Article in English | MEDLINE | ID: mdl-35603596

ABSTRACT

BACKGROUND: Sodium-glucose cotransporter-2 inhibitors are foundational therapy in patients with heart failure with reduced ejection fraction (HFrEF), but underlying mechanisms of benefit are not well defined. We sought to investigate the relationships between sodium-glucose cotransporter-2 inhibitor treatment, changes in metabolic pathways, and outcomes using targeted metabolomics. METHODS: DEFINE-HF (Dapagliflozin Effects on Biomarkers, Symptoms and Functional Status in Patients With HF With Reduced Ejection Fraction) was a placebo-controlled trial of dapagliflozin in HFrEF. We performed targeted mass spectrometry profiling of 63 metabolites (45 acylcarnitines [markers of fatty acid oxidation], 15 amino acids, and 3 conventional metabolites) in plasma samples at randomization and 12 weeks. Using mixed models, we identified principal components analysis-defined metabolite clusters that changed differentially with treatment and examined the relationship between change in metabolite clusters and change in Kansas City Cardiomyopathy Questionnaire scores and NT-proBNP (N-terminal probrain natriuretic peptide). Models were adjusted for relevant clinical covariates and nominal P<0.05 with false discovery rate-adjusted P<0.10 was used to determine statistical significance. RESULTS: Among the 234 DEFINE-HF participants with targeted metabolomic data, the mean age was 62.0±11.1 years, 25% were women, 38% were Black, and mean ejection fraction was 27±8%. Dapagliflozin increased ketone-related and short-chain acylcarnitine as well as medium-chain acylcarnitine principal components analysis-defined metabolite clusters compared with placebo (nominal P=0.01, false discovery rate-adjusted P=0.08 for both clusters). However, ketosis (ß-hydroxybutyrate levels >500 µmol/L) was achieved infrequently (3 [2.5%] in dapagliflozin arm versus 1 [0.9%] in placebo arm) and supraphysiologic levels were not observed. Increases in long-chain acylcarnitine, long-chain dicarboxylacylcarnitine, and aromatic amino acid metabolite clusters were associated with decreases in Kansas City Cardiomyopathy Questionnaire scores (ie, worse quality of life) and increases in NT-proBNP levels, without interaction by treatment group. CONCLUSIONS: In this study of targeted metabolomics in a placebo-controlled trial of sodium-glucose cotransporter-2 inhibitors in HFrEF, we observed effects of dapagliflozin on key metabolic pathways, supporting a role for altered ketone and fatty acid biology with sodium-glucose cotransporter-2 inhibitors in patients with HFrEF. Only physiologic levels of ketosis were observed. In addition, we identified several metabolic biomarkers associated with adverse HFrEF outcomes. REGISTRATION: URL: https://www. CLINICALTRIALS: gov; Unique identifier: NCT02653482.


Subject(s)
Cardiomyopathies , Heart Failure , Ketosis , Sodium-Glucose Transporter 2 Inhibitors , Ventricular Dysfunction, Left , Aged , Female , Humans , Male , Middle Aged , Benzhydryl Compounds/adverse effects , Biomarkers , Cardiomyopathies/complications , Fatty Acids , Glucosides , Ketones/therapeutic use , Quality of Life , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Stroke Volume/physiology , Ventricular Dysfunction, Left/complications
3.
Nat Commun ; 9(1): 2252, 2018 06 13.
Article in English | MEDLINE | ID: mdl-29899519

ABSTRACT

Angiopoietin-like 4 (ANGPTL4) is an endogenous inhibitor of lipoprotein lipase that modulates lipid levels, coronary atherosclerosis risk, and nutrient partitioning. We hypothesize that loss of ANGPTL4 function might improve glucose homeostasis and decrease risk of type 2 diabetes (T2D). We investigate protein-altering variants in ANGPTL4 among 58,124 participants in the DiscovEHR human genetics study, with follow-up studies in 82,766 T2D cases and 498,761 controls. Carriers of p.E40K, a variant that abolishes ANGPTL4 ability to inhibit lipoprotein lipase, have lower odds of T2D (odds ratio 0.89, 95% confidence interval 0.85-0.92, p = 6.3 × 10-10), lower fasting glucose, and greater insulin sensitivity. Predicted loss-of-function variants are associated with lower odds of T2D among 32,015 cases and 84,006 controls (odds ratio 0.71, 95% confidence interval 0.49-0.99, p = 0.041). Functional studies in Angptl4-deficient mice confirm improved insulin sensitivity and glucose homeostasis. In conclusion, genetic inactivation of ANGPTL4 is associated with improved glucose homeostasis and reduced risk of T2D.


Subject(s)
Angiopoietin-Like Protein 4/deficiency , Angiopoietin-Like Protein 4/genetics , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Amino Acid Substitution , Angiopoietin-Like Protein 4/metabolism , Animals , Blood Glucose/metabolism , Case-Control Studies , Diabetes Mellitus, Type 2/etiology , Female , Gene Silencing , Genetic Association Studies , Genetic Variation , Heterozygote , Homeostasis , Humans , Insulin Resistance/genetics , Lipoprotein Lipase/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Risk Factors , Exome Sequencing
4.
Am J Epidemiol ; 171(10): 1126-33, 2010 May 15.
Article in English | MEDLINE | ID: mdl-20406759

ABSTRACT

The authors conducted a 2003-2007 case-control study including 184 cases and 194 controls to examine the association between blood lead and the risk of amyotrophic lateral sclerosis (ALS) among US veterans and to explore the influence on this association of bone turnover and genetic factors related to lead toxicokinetics. Blood lead, plasma biomarkers of bone formation (procollagen type 1 amino-terminal peptide (PINP)) and resorption (C-terminal telopeptides of type 1 collagen (CTX)), and the K59N polymorphism in the delta-aminolevulinic acid dehydratase gene, ALAD, were measured. Odds ratios and 95% confidence intervals for the association of blood lead with ALS were estimated with unconditional logistic regression after adjustment for age and bone turnover. Blood lead levels were higher among cases compared with controls (P < 0.0001, age adjusted). A doubling of blood lead was associated with a 1.9-fold increased risk of ALS (95% confidence interval: 1.3, 2.7) after adjustment for age and CTX. Additional adjustment for PINP did not alter the results. Significant lead-ALS associations were observed in substrata of PINP and CTX levels. The K59N polymorphism in the ALAD gene did not modify the lead-ALS association (P = 0.32). These results extend earlier findings by accounting for bone turnover in confirming the association between elevated blood lead level and higher risk of ALS.


Subject(s)
Amyotrophic Lateral Sclerosis/epidemiology , Environmental Exposure/adverse effects , Lead/blood , Veterans , Adult , Aged , Aged, 80 and over , Amyotrophic Lateral Sclerosis/blood , Amyotrophic Lateral Sclerosis/genetics , Biomarkers , Bone Resorption/complications , Bone Resorption/epidemiology , Bone and Bones/metabolism , Case-Control Studies , Confidence Intervals , Female , Humans , Lead Poisoning/blood , Lead Poisoning/complications , Logistic Models , Male , Middle Aged , Odds Ratio , Osteogenesis , Porphobilinogen Synthase/genetics , Registries , Risk Factors , Surveys and Questionnaires , United States/epidemiology , Veterans/statistics & numerical data
SELECTION OF CITATIONS
SEARCH DETAIL