Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
J Pharm Sci ; 111(3): 638-647, 2022 03.
Article in English | MEDLINE | ID: mdl-34767826

ABSTRACT

The expression of voltage-gated potassium Kv1.3 channels is increased in activated microglia, with non-selective blockade reported to attenuate microglial-mediated neuroinflammation. In this study, we evaluated the impact of a potent and selective peptidic blocker of Kv1.3 channels, HsTX1[R14A], on microglial-mediated neuroinflammation in vitro and in vivo. Treatment with both 0.1 and 1 µg/mL lipopolysaccharide (LPS) significantly (p < 0.05) increased Kv1.3 abundance on the surface of BV-2 microglia in association with increased levels of mRNA for tumour necrosis factor-α (TNF-α) and interleukin-6 (IL-6). The increased transcription of TNF-α and IL-6 was significantly attenuated (by 24.9 and 20.2%, respectively) by HsTX1[R14A] (100 nM). The concomitant increase in TNF-α and IL-6 release from BV-2 microglia was significantly attenuated by HsTX1[R14A] by 10.7 and 12.6%, respectively. In LPS-treated primary mouse microglia, the levels of TNF-α and nitric oxide were also attenuated by HsTX1[R14A] (26.1 and 20.4%, respectively). In an LPS-induced mouse model of neuroinflammation, both an immediate and delayed subcutaneous dose of HsTX1[R14A] (2 mg/kg) significantly reduced plasma and brain levels of the pro-inflammatory mediators TNF-α, IL-1ß and IL-6, with no impact on the anti-inflammatory IL-10. These results demonstrate that HsTX1[R14A] is a promising therapeutic candidate for the treatment of diseases with a neuroinflammatory component.


Subject(s)
Kv1.3 Potassium Channel , Lipopolysaccharides , Animals , Cytokines/metabolism , Interleukin-6/metabolism , Lipopolysaccharides/pharmacology , Mice , Microglia/metabolism , Neuroinflammatory Diseases , Peptides/metabolism , Tumor Necrosis Factor-alpha/metabolism
2.
Psychoneuroendocrinology ; 107: 208-216, 2019 09.
Article in English | MEDLINE | ID: mdl-31150966

ABSTRACT

Angiotensin AT1 receptors are implicated in behavioral and physiological processes associated with fear and stress. However, the precise role of AT1 receptors in modulating fear-related behavior and its relation to their physiological effects remains unclear. Here, we examined innate and learned fear responses and their relationship to cardiovascular arousal in AT1A receptor knockout (AT1A-/-) mice. Using synchronized video and blood pressure telemetry, we found that, in a novel test environment, AT1A-/- mice showed reduced neophobia but a similar rise in blood pressure, as compared to AT1A+/+ mice. In response to a discrete threat, footshock, both flight behavior and cardiovascular arousal were decreased in AT1A-/- mice. Reduced flight behavior was also observed in AT1A-/- mice in the elevated T-maze test. During fear conditioning, the immediate freezing response to the first shock, but not the rate of freezing acquisition was decreased in AT1A-/- mice. Likewise, AT1A-/- mice showed reduced freezing and pressor responses to the first re-exposure, but normal rate of freezing extinction over subsequent trials. Similarly, in the elevated T-maze, the rates of avoidance acquisition and escape learning remained unchanged in AT1A-/- mice. Finally, after re-exposure, AT1A-/- mice displayed altered c-Fos expression, compared to AT1A+/+ mice, in the hypothalamus and periaqueductal gray but not in fear-related limbic-cortical areas, nor in medullary nuclei that convey visceral afferent information. We conclude that AT1A receptor knockout reduces innate fear responses, without affecting learning efficiency in mice. These effects are dissociable from cardiovascular effects and likely reflect altered neurotransmission in hypothalamic-midbrain defense regions.


Subject(s)
Blood Pressure/physiology , Fear/physiology , Receptor, Angiotensin, Type 1/metabolism , Angiotensins/metabolism , Animals , Anxiety/physiopathology , Cardiovascular System/metabolism , Conditioning, Operant/physiology , Learning/physiology , Male , Mice , Mice, Knockout , Neurons/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Receptor, Angiotensin, Type 1/genetics , Receptor, Angiotensin, Type 1/physiology
3.
ACS Chem Neurosci ; 10(3): 1099-1114, 2019 03 20.
Article in English | MEDLINE | ID: mdl-30547573

ABSTRACT

Targeting allosteric sites of the M1 muscarinic acetylcholine receptor (mAChR) is an enticing approach to overcome the lack of receptor subtype selectivity observed with orthosteric ligands. This is a promising strategy for obtaining novel therapeutics to treat cognitive deficits observed in Alzheimer's disease and schizophrenia, while reducing the peripheral side effects such as seen in the current treatment regimes, which are non-subtype selective. We previously described compound 2, the first positive allosteric modulator (PAM) of the M1 mAChR based on a 6-phenylpyrimidin-4-one scaffold, which has been further developed in this study. Herein, we present the synthesis, characterization, and pharmacological evaluation of a series of 6-phenylpyrimidin-4-ones with modifications to the 4-(1-methylpyrazol-4-yl)benzyl pendant. Selected compounds, BQCA, 1, 2, 9i, 13, 14b, 15c, and 15d, were further profiled in terms of their allosteric affinity, cooperativity with acetylcholine (ACh), and intrinsic efficacy. Additionally, 2 and 9i were tested in mouse primary cortical neurons, displaying various degrees of intrinsic agonism and potentiation of the acetylcholine response. Overall, the results suggest that the pendant moiety is important for allosteric binding affinity and the direct agonistic efficacy of the 6-phenylpyrimidin-4-one based M1 mAChR PAMs.


Subject(s)
Pyrimidines/chemical synthesis , Pyrimidines/pharmacology , Quinolines/chemical synthesis , Quinolines/pharmacology , Receptor, Muscarinic M1/agonists , Receptor, Muscarinic M1/physiology , Allosteric Regulation/drug effects , Allosteric Regulation/physiology , Animals , CHO Cells , Cells, Cultured , Cricetinae , Cricetulus , Crystallography, X-Ray/methods , Mice
4.
Hong Kong Med J ; 24(2): 158-165, 2018 04.
Article in English | MEDLINE | ID: mdl-29622759

ABSTRACT

INTRODUCTION: Endobronchial one-way valves have been proposed as treatment for persistent air leak complicating spontaneous pneumothorax in which surgical intervention is not feasible. However, published data on efficacy, safety, and factors associated with success are scanty. METHODS: This is a retrospective study of 37 patients at a general hospital from 2008 to 2016. The impact of endobronchial valve implantation on the time to air-leak cessation after bronchoscopy was evaluated. RESULTS: The median patient age was 71 years. The majority of patients were males (92%), were ever-smokers (83%), had at least one co-morbidity (97%), and had secondary spontaneous pneumothorax (89%). Nineteen patients (51%) had a mean of 2.6 endobronchial valves implanted (range, 1-6). The air leak ceased within 72 hours for only eight patients (22% of the complete cohort), with immediate air-leak cessation after completion of endobronchial valve implantation. All six successful cases that had computed tomographic data of the thorax were shown to have bilateral intact interlobar fissures. The median (interquartile range) Charlson co-morbidity index was 1 (0.25-1) and 2 (1-3) for the success group and failure group, respectively (P=0.029). All patients in the no-endobronchial valve group survived, whereas three patients in the endobronchial valve group died within 30 days of endobronchial valve implantation. CONCLUSION: Only a small proportion of cases of endobronchial valve implantation for air leak complicating pneumothorax had unequivocal success. Intact bilateral interlobar fissures appear to be a necessary, though not sufficient, condition for success. Patients with fewer medical co-morbidities and immediate air-leak cessation after endobronchial valve implantation have a higher likelihood of success.


Subject(s)
Pneumothorax/surgery , Prostheses and Implants , Aged , Female , Humans , Male , Pneumothorax/complications , Postoperative Complications/mortality , Prostheses and Implants/adverse effects , Retrospective Studies
5.
Brain Behav Immun ; 70: 36-47, 2018 05.
Article in English | MEDLINE | ID: mdl-29545118

ABSTRACT

Epidemiological evidence suggests that people with bipolar disorder prescribed lithium exhibit a lower risk of Alzheimer's disease (AD) relative to those prescribed other mood-stabilizing medicines. Lithium chloride (LiCl) reduces brain ß-amyloid (Aß) levels, and the brain clearance of Aß is reduced in AD. Therefore, the purpose of this study was to assess whether the cognitive benefits of LiCl are associated with enhanced brain clearance of exogenously-administered Aß. The brain clearance of intracerebroventricularly (icv) administered 125I-Aß42 was assessed in male Swiss outbred mice administered daily oral NaCl or LiCl (300 mg/kg for 21 days). LiCl exhibited a 31% increase in the brain clearance of 125I-Aß42 over 10 min, which was associated with a 1.6-fold increase in brain microvascular expression of the blood-brain barrier efflux transporter low density lipoprotein receptor-related protein 1 (LRP1) and increased cerebrospinal fluid (CSF) bulk-flow. 8-month-old female wild type (WT) and APP/PS1 mice were also administered daily NaCl or LiCl for 21 days, which was followed by cognitive assessment by novel object recognition and water maze, and measurement of soluble Aß42, plaque-associated Aß42, and brain efflux of 125I-Aß42. LiCl treatment restored the long-term spatial memory deficit observed in APP/PS1 mice as assessed by the water maze (back to similar levels of escape latency as WT mice), but the short-term memory deficit remained unaffected by LiCl treatment. While LiCl did not affect plaque-associated Aß42, soluble Aß42 levels were reduced by 49.9% in APP/PS1 mice receiving LiCl. The brain clearance of 125I-Aß42 decreased by 27.8% in APP/PS1 mice, relative to WT mice, however, LiCl treatment restored brain 125I-Aß42 clearance in APP/PS1 mice to a rate similar to that observed in WT mice. These findings suggest that the cognitive benefits and brain Aß42 lowering effects of LiCl are associated with enhanced brain clearance of Aß42, possibly via brain microvascular LRP1 upregulation and increased CSF bulk-flow, identifying a novel mechanism of protection by LiCl for the treatment of AD.


Subject(s)
Amyloid beta-Peptides/drug effects , Cognition/drug effects , Lithium Chloride/therapeutic use , Alzheimer Disease , Amyloid beta-Protein Precursor , Animals , Blood-Brain Barrier/drug effects , Brain , Disease Models, Animal , Lithium Chloride/pharmacology , Low Density Lipoprotein Receptor-Related Protein-1 , Male , Memory/drug effects , Mice , Mice, Transgenic , Plaque, Amyloid , Presenilin-1 , Receptors, LDL/drug effects , Receptors, LDL/physiology , Tumor Suppressor Proteins/drug effects , Tumor Suppressor Proteins/physiology
6.
Anal Biochem ; 544: 98-107, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29305096

ABSTRACT

With the emergence of multi- and extensive-drug (MDR/XDR) resistant Mycobacterium tuberculosis (M. tb), tuberculosis (TB) persists as one of the world's leading causes of death. Recently, isothermal DNA amplification methods received much attention due to their ease of translation onto portable point-of-care (POC) devices for TB diagnosis. In this study, we aimed to devise a simple yet robust detection method for M. tb. Amongst the numerous up-and-coming isothermal techniques, Recombinase Polymerase Amplification (RPA) was chosen for a real-time detection of TB with or without MDR. In our platform, real-time RPA (RT-RPA) was integrated on a lab-on-a-disc (LOAD) with on-board power to maintain temperature for DNA amplification. Sputa collected from healthy volunteers were spiked with respective target M. tb samples for testing. A limit of detection of 102 colony-forming unit per millilitre in 15 min was achieved, making early detection and differentiation of M. tb strains highly feasible in extreme POC settings. Our RT-RPA LOAD platform has also been successfully applied in the differentiation of MDR-TB from H37Ra, an attenuated TB strain. In summary, a quantitative RT-RPA on LOAD assay with a high level of sensitivity was developed as a foundation for further developments in medical bedside and POC diagnostics.


Subject(s)
Automation , Lab-On-A-Chip Devices , Mycobacterium tuberculosis/genetics , Nucleic Acid Amplification Techniques , Polymerase Chain Reaction , Tuberculosis, Multidrug-Resistant/genetics , Healthy Volunteers , Humans , Point-of-Care Testing , Time Factors
7.
J Neurochem ; 144(1): 81-92, 2018 01.
Article in English | MEDLINE | ID: mdl-29105065

ABSTRACT

Lower levels of the cognitively beneficial docosahexaenoic acid (DHA) are often observed in Alzheimer's disease (AD) brains. Brain DHA levels are regulated by the blood-brain barrier (BBB) transport of plasma-derived DHA, a process facilitated by fatty acid-binding protein 5 (FABP5). This study reports a 42.1 ± 12.6% decrease in the BBB transport of 14 C-DHA in 8-month-old AD transgenic mice (APPswe,PSEN1∆E9) relative to wild-type mice, associated with a 34.5 ± 6.7% reduction in FABP5 expression in isolated brain capillaries of AD mice. Furthermore, short-term spatial and recognition memory deficits were observed in AD mice on a 6-month n-3 fatty acid-depleted diet, but not in AD mice on control diet. This intervention led to a dramatic reduction (41.5 ± 11.9%) of brain DHA levels in AD mice. This study demonstrates FABP5 deficiency and impaired DHA transport at the BBB are associated with increased vulnerability to cognitive deficits in mice fed an n-3 fatty acid-depleted diet, in line with our previous studies demonstrating a crucial role of FABP5 in BBB transport of DHA and cognitive function.


Subject(s)
Blood-Brain Barrier , Cognition Disorders/etiology , Docosahexaenoic Acids/pharmacokinetics , Fatty Acid-Binding Proteins/physiology , Neoplasm Proteins/physiology , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Brain Chemistry , Cognition Disorders/genetics , Cognition Disorders/metabolism , Dietary Fats/administration & dosage , Docosahexaenoic Acids/deficiency , Escherichia coli Proteins , Fatty Acid-Binding Proteins/biosynthesis , Fatty Acids, Omega-3/deficiency , Female , Humans , Male , Maze Learning , Memory Disorders/etiology , Memory Disorders/genetics , Memory Disorders/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mutation, Missense , Neoplasm Proteins/biosynthesis , Polysaccharide-Lyases , Presenilin-1/genetics , Presenilin-1/metabolism , Recognition, Psychology , Recombinant Fusion Proteins/metabolism
8.
Biosens Bioelectron ; 93: 212-219, 2017 07 15.
Article in English | MEDLINE | ID: mdl-27660018

ABSTRACT

Sepsis by bacterial infection causes high mortality in patients in intensive care unit (ICU). Rapid identification of bacterial infection is essential to ensure early appropriate administration of antibiotics to save lives of patients, yet the present benchtop molecular diagnosis is time-consuming and labor-intensive, which limits the treatment efficiency especially when the number of samples to be tested is extensive. Therefore, we hereby report a microfluidic platform lab-on-a-disc (LOAD) to provide a sample-to-answer solution. Our LOAD customized design of microfluidic channels allows automation to mimic sequential analytical steps in benchtop environment. It relies on a simple but controllable centrifugation force for the actuation of samples and reagents. Our LOAD system performs three major functions, namely DNA extraction, isothermal DNA amplification and real-time signal detection, in a predefined sequence. The disc is self-contained for conducting sample heating with chemical lysis buffer and silica microbeads are employed for DNA extraction from clinical specimens. Molecular diagnosis of specific target bacteria DNA sequences is then performed using a real-time loop-mediated isothermal amplification (RT-LAMP) with SYTO-9 as the signal reporter. Our LOAD system capable of bacterial identification of Mycobacterium tuberculosis (TB) and Acinetobacter baumanii (Ab) with the detection limits 103cfu/mL TB in sputum and 102cfu/mL Ab in blood within 2h after sample loading. The reported LOAD based on an integrated approach should address the growing needs for rapid point-of-care medical diagnosis in ICU.


Subject(s)
Acinetobacter baumannii/isolation & purification , Biosensing Techniques , DNA, Bacterial/isolation & purification , Mycobacterium tuberculosis/isolation & purification , Sepsis/microbiology , Acinetobacter baumannii/pathogenicity , DNA, Bacterial/chemistry , Humans , Microfluidic Analytical Techniques , Mycobacterium tuberculosis/pathogenicity , Organic Chemicals/chemistry , Sepsis/diagnosis
9.
J Neurosci ; 36(46): 11755-11767, 2016 11 16.
Article in English | MEDLINE | ID: mdl-27852782

ABSTRACT

Fatty acid-binding protein 5 (FABP5) at the blood-brain barrier contributes to the brain uptake of docosahexaenoic acid (DHA), a blood-derived polyunsaturated fatty acid essential for maintenance of cognitive function. Given the importance of DHA in cognition, the aim of this study was to investigate whether deletion of FABP5 results in cognitive dysfunction and whether this is associated with reduced brain endothelial cell uptake of exogenous DHA and subsequent attenuation in the brain levels of endogenous DHA. Cognitive function was assessed in male and female FABP5+/+ and FABP5-/- mice using a battery of memory paradigms. FABP5-/- mice exhibited impaired working memory and short-term memory, and these cognitive deficits were associated with a 14.7 ± 5.7% reduction in endogenous brain DHA levels. The role of FABP5 in the blood-brain barrier transport of DHA was assessed by measuring 14C-DHA uptake into brain endothelial cells and capillaries isolated from FABP5+/+ and FABP5-/- mice. In line with a crucial role of FABP5 in the brain uptake of DHA, 14C-DHA uptake into brain endothelial cells and brain capillaries of FABP5-/- mice was reduced by 48.4 ± 14.5% and 14.0 ± 4.2%, respectively, relative to those of FABP5+/+ mice. These results strongly support the hypothesis that FABP5 is essential for maintaining brain endothelial cell uptake of DHA, and that cognitive deficits observed in FABP5-/- mice are associated with reduced CNS access of DHA. SIGNIFICANCE STATEMENT: Genetic deletion of fatty acid-binding protein 5 (FABP5) in mice reduces uptake of exogenous docosahexaenoic acid (DHA) into brain endothelial cells and brain capillaries and reduces brain parenchymal levels of endogenous DHA. Therefore, FABP5 in the brain endothelial cell is a crucial contributor to the brain levels of DHA. Critically, lowered brain DHA levels in FABP5-/- mice occurred in tandem with cognitive deficits in a battery of memory paradigms. This study provides evidence of a critical role for FABP5 in the maintenance of cognitive function via regulating the brain uptake of DHA, and suggests that upregulation of FABP5 in neurodegenerative diseases, where brain DHA levels are possibly diminished (e.g., Alzheimer's disease), may provide a novel therapeutic approach for restoring cognitive function.


Subject(s)
Blood-Brain Barrier/metabolism , Brain/physiology , Cognition/physiology , Docosahexaenoic Acids/metabolism , Executive Function/physiology , Fatty Acid-Binding Proteins/metabolism , Neoplasm Proteins/metabolism , Animals , Female , Male , Mice , Mice, Inbred C57BL , Mice, Knockout
10.
J Pharmacol Exp Ther ; 359(2): 354-365, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27630144

ABSTRACT

Current antipsychotics are effective in treating the positive symptoms associated with schizophrenia, but they remain suboptimal in targeting cognitive dysfunction. Recent studies have suggested that positive allosteric modulation of the M1 muscarinic acetylcholine receptor (mAChR) may provide a novel means of improving cognition. However, very little is known about the potential of combination therapies in extending coverage across schizophrenic symptom domains. This study investigated the effect of the M1 mAChR positive allosteric modulator BQCA [1-(4-methoxybenzyl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid], alone or in combination with haloperidol (a first-generation antipsychotic), clozapine (a second-generation atypical antipsychotic), or aripiprazole (a third-generation atypical antipsychotic), in reversing deficits in sensorimotor gating and spatial memory induced by the N-methyl-d-aspartate receptor antagonist, MK-801 [(5R,10S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine]. Sensorimotor gating and spatial memory induction are two models that represent aspects of schizophrenia modeled in rodents. In prepulse inhibition (an operational measure of sensorimotor gating), BQCA alone had minimal effects but exhibited different levels of efficacy in reversing MK-801-induced prepulse inhibition disruptions when combined with a subeffective dose of each of the three (currently prescribed) antipsychotics. Furthermore, the combined effect of BQCA and clozapine was absent in M1-/- mice. Interestingly, although BQCA alone had no effect in reversing MK-801-induced memory impairments in a Y-maze spatial test, we observed a reversal upon the combination of BQCA with atypical antipsychotics, but not with haloperidol. These findings provide proof of concept that a judicious combination of existing antipsychotics with a selective M1 mAChR positive allosteric modulator can extend antipsychotic efficacy in glutamatergic deficit models of behavior.


Subject(s)
Antipsychotic Agents/pharmacology , Behavior, Animal/drug effects , Glutamates/metabolism , Quinolines/pharmacology , Receptor, Muscarinic M1/metabolism , Acetylcholine/metabolism , Allosteric Regulation/drug effects , Animals , CHO Cells , Cricetinae , Cricetulus , Dizocilpine Maleate/pharmacology , Dose-Response Relationship, Drug , Drug Interactions , Humans , Male , Maze Learning/drug effects , Memory/drug effects , Mice , Prepulse Inhibition/drug effects , Receptor, Muscarinic M1/chemistry
11.
Analyst ; 140(13): 4566-4575, 2015 Jul 07.
Article in English | MEDLINE | ID: mdl-26000345

ABSTRACT

As in all RNA viruses, influenza viruses change and mutate constantly because their RNA polymerase has no proofreading ability. This poses a serious threat to public health nowadays. In addition, traditional pathogen-based detection methods may not be able to report an infection from an unknown type or a subtype of virus if its nucleotide sequence is not known. Because of these factors, targeting host microRNA signatures may be an alternative to classify infections and distinguish types of pathogens as microRNAs are produced in humans shortly after infection. Although this approach is in its infant stage, there is an urgent need to develop a rapid reporter assay for microRNA for disease control and prevention. As a proof of concept, we report herein for the first time a non-PCR MARS (MicroRNA-RNase-SPR) assay to detect the microRNA miR-29a-3p from human subjects infected with influenza virus H1N1 by surface plasmon resonance (SPR). In our MARS assay, RNase H is employed to specifically hydrolyze the RNA probes immobilized on the gold surface where they hybridize with its cognate target cDNAs miR-29a-3p, where it was formed from reverse transcription with mature miR-29a-3p specific stem-looped primers. After the digestion of the RNA probe by RNase H, the intact cDNA was released from the RNA-DNA hybrid and bound to a new RNA probe for another enzymatic reaction cycle to amplify signals. With assay optimization, the detection limit of our MARS assay for miR-29a-3p was found to be 1 nM, and this new assay could be completed within 1 hour without thermal cycling. This non-PCR assay with high selectivity for mature microRNA provides a new platform for rapid disease diagnosis, quarantine and disease control.


Subject(s)
Influenza A Virus, H1N1 Subtype/physiology , MicroRNAs/analysis , Pharynx/virology , Ribonuclease H/metabolism , Surface Plasmon Resonance/methods , Base Sequence , Biotin/metabolism , Humans , Influenza A Virus, H1N1 Subtype/isolation & purification , Influenza, Human/genetics , Limit of Detection , MicroRNAs/genetics , MicroRNAs/metabolism , Polymerase Chain Reaction , Streptavidin/metabolism , Time Factors
12.
Colorectal Dis ; 15(4): 487-91, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23323626

ABSTRACT

AIM: Rubber band ligation is a common office procedure for the treatment of symptomatic haemorrhoids. It can be associated with pain and vasovagal symptoms. The effect of local anaesthetic use during banding was studied. METHOD: A single-blinded randomized controlled trial was carried out in the colorectal outpatient clinic. Patients presenting with symptomatic haemorrhoids suitable for banding were prospectively recruited and randomized to undergo the procedure with local anaesthetic or without (control). Submucosal bupivacaine was injected immediately after banding just proximal to the site. Vasovagal symptoms were assessed at the time of banding and pain scores (visual analogue scale) were recorded at the conclusion of the procedure, after 15 min, and on leaving the clinic. RESULTS: Seventy-two patients (40 local anaesthetic injection, group 1; 32 no injection, group 2) were recruited. The mean ages were 50 and 54 years respectively, the median duration of symptoms was 12 months in each group and the median number of haemorrhoids banded was three in each group. The mean pain score on leaving the clinic was 2.6 (95% CI 2.1, 3.1) in group 1 and 4.1 (95% CI 3.3, 5.0) (P = 0.04) in group 2. There were no complications related to local anaesthetic use. No significant difference in vasovagal symptoms was found (P = 0.832). CONCLUSION: Local anaesthetic injection at the time of banding is simple and safe. It may reduce patient discomfort following banding of haemorrhoids.


Subject(s)
Anesthesia, Local , Hemorrhoids/surgery , Pain, Postoperative/prevention & control , Anesthetics, Local , Bupivacaine , Female , Humans , Ligation , Male , Middle Aged , Pain Measurement , Single-Blind Method
13.
Biochem Biophys Res Commun ; 148(2): 684-93, 1987 Oct 29.
Article in English | MEDLINE | ID: mdl-3500717

ABSTRACT

In order to clarify the structural requirements associated with the inhibition of mitochondrial respiration by MPP+, the neurotoxic metabolites of the Parkinsonian agent MPTP, ten sets of pyridine/N-methylpyridinium pairs and a few miscellaneous compounds were evaluated on rat liver intact mitochondria (Mw) and on submitochondrial particles (SMP). The pyridinium partners were much more potent inhibitors on Mw than on SMP, indicating that they are concentrated inside mitochondria by the energy-dependent process previously reported for MPP+, probably as a consequence of non-specific passive transport across the mitochondrial inner membrane in response to the transmembrane potential. In the SMP assay, the neutral pyridines were stronger inhibitors than were the pyridinium cations, and the inhibitory potency varied little with structural changes. The N-methylated forms of beta-carbolines may act as endogenous MPP+-like agents.


Subject(s)
Mitochondria, Liver/metabolism , Neurotoxins , Oxygen Consumption/drug effects , Pyridines/pharmacology , Submitochondrial Particles/metabolism , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine , Animals , Mitochondria, Liver/drug effects , Rats , Structure-Activity Relationship , Submitochondrial Particles/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...