Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters










Publication year range
1.
Cell Commun Signal ; 22(1): 348, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961488

ABSTRACT

BACKGROUND: Primary cilia on the surface of eukaryotic cells serve as sensory antennas for the reception and transmission in various cell signaling pathways. They are dynamic organelles that rapidly form during differentiation and cell cycle exit. Defects in these organelles cause a group of wide-ranging disorders called ciliopathies. Tonicity-responsive enhancer-binding protein (TonEBP) is a pleiotropic stress protein that mediates various physiological and pathological cellular responses. TonEBP is well-known for its role in adaptation to a hypertonic environment, to which primary cilia have been reported to contribute. Furthermore, TonEBP is involved in a wide variety of other signaling pathways, such as Sonic Hedgehog and WNT signaling, that promote primary ciliogenesis, suggesting a possible regulatory role. However, the functional relationship between TonEBP and primary ciliary formation remains unclear. METHODS: TonEBP siRNAs and TonEBP-mCherry plasmids were used to examine their effects on cell ciliation rates, assembly and disassembly processes, and regulators. Serum starvation was used as a condition to induce ciliogenesis. RESULTS: We identified a novel pericentriolar localization for TonEBP. The results showed that TonEBP depletion facilitates the formation of primary cilia, whereas its overexpression results in fewer ciliated cells. Moreover, TonEBP controlled the expression and activity of aurora kinase A, a major negative regulator of ciliogenesis. Additionally, TonEBP overexpression inhibited the loss of CP110 from the mother centrioles during the early stages of primary cilia assembly. Finally, TonEBP regulated the localization of PCM1 and AZI1, which are necessary for primary cilia formation. CONCLUSIONS: This study proposes a novel role for TonEBP as a pericentriolar protein that regulates the integrity of centriolar satellite components. This regulation has shown to have a negative effect on ciliogenesis. Investigations into cilium assembly and disassembly processes suggest that TonEBP acts upstream of the aurora kinase A - histone deacetylase 6 signaling pathway and affects basal body formation to control ciliogenesis. Taken together, our data proposes previously uncharacterized regulation of primary cilia assembly by TonEBP.


Subject(s)
Aurora Kinase A , Centrioles , Cilia , Cilia/metabolism , Humans , Aurora Kinase A/metabolism , Aurora Kinase A/genetics , Centrioles/metabolism , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Histone Deacetylase 6/metabolism , Histone Deacetylase 6/genetics , Animals , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/genetics
2.
J Photochem Photobiol B ; 257: 112949, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38865816

ABSTRACT

Large scale outbreaks of infectious respiratory disease have repeatedly plagued the globe over the last 100 years. The scope and strength of the outbreaks are getting worse as pathogenic RNA viruses are rapidly evolving and highly evasive to vaccines and anti-viral drugs. Germicidal UV-C is considered as a robust agent to disinfect RNA viruses regardless of their evolution. While genomic damage by UV-C has been known to be associated with viral inactivation, the precise relationship between the damage and inactivation remains unsettled as genomic damage has been analyzed in small areas, typically under 0.5 kb. In this study, we assessed genomic damage by the reduced efficiency of reverse transcription of regions of up to 7.2 kb. Our data seem to indicate that genomic damage was directly proportional to the size of the genome, and a single hit of damage was sufficient for inactivation of RNA viruses. The high efficacy of UV-C is already effectively adopted to inactivate airborne RNA viruses.


Subject(s)
RNA Viruses , Ultraviolet Rays , Virus Inactivation , RNA Viruses/radiation effects , RNA Viruses/genetics , RNA Viruses/physiology , Virus Inactivation/radiation effects , Genome, Viral , Humans , Reverse Transcription , RNA, Viral/genetics
3.
Cell Commun Signal ; 22(1): 142, 2024 02 21.
Article in English | MEDLINE | ID: mdl-38383392

ABSTRACT

BACKGROUND: Calcium is a ubiquitous intracellular messenger that regulates the expression of various genes involved in cell proliferation, differentiation, and motility. The involvement of calcium in diverse metabolic pathways has been suggested. However, the effect of calcium in peroxisomes, which are involved in fatty acid oxidation and scavenges the result reactive oxygen species (ROS), remains elusive. In addition, impaired peroxisomal ROS inhibit the mammalian target of rapamycin complex 1 (mTORC1) and promote autophagy. Under stress, autophagy serves as a protective mechanism to avoid cell death. In response to oxidative stress, lysosomal calcium mediates transcription factor EB (TFEB) activation. However, the impact of calcium on peroxisome function and the mechanisms governing cellular homeostasis to prevent diseases caused by calcium deficiency are currently unknown. METHODS: To investigate the significance of calcium in peroxisomes and their roles in preserving cellular homeostasis, we established an in-vitro scenario of calcium depletion. RESULTS: This study demonstrated that calcium deficiency reduces catalase activity, resulting in increased ROS accumulation in peroxisomes. This, in turn, inhibits mTORC1 and induces pexophagy through TFEB activation. However, treatment with the antioxidant N-acetyl-l-cysteine (NAC) and the autophagy inhibitor chloroquine impeded the nuclear translocation of TFEB and attenuated peroxisome degradation. CONCLUSIONS: Collectively, our study revealed that ROS-mediated TFEB activation triggers pexophagy during calcium deficiency, primarily because of attenuated catalase activity. We posit that calcium plays a significant role in the proper functioning of peroxisomes, critical for fatty-acid oxidation and ROS scavenging in maintaining cellular homeostasis. These findings have important implications for signaling mechanisms in various pathologies, including Zellweger's syndrome and ageing.


Subject(s)
Calcium , Macroautophagy , Reactive Oxygen Species/metabolism , Calcium/metabolism , Catalase/metabolism , Oxidative Stress , Autophagy/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism
4.
J Biol Chem ; 300(1): 105480, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37992803

ABSTRACT

The bone-derived hormone fibroblast growth factor-23 (FGF23) has recently received much attention due to its association with chronic kidney disease and cardiovascular disease progression. Extracellular sodium concentration ([Na+]) plays a significant role in bone metabolism. Hyponatremia (lower serum [Na+]) has recently been shown to be independently associated with FGF23 levels in patients with chronic systolic heart failure. However, nothing is known about the direct impact of [Na+] on FGF23 production. Here, we show that an elevated [Na+] (+20 mM) suppressed FGF23 formation, whereas low [Na+] (-20 mM) increased FGF23 synthesis in the osteoblast-like cell lines UMR-106 and MC3T3-E1. Similar bidirectional changes in FGF23 abundance were observed when osmolality was altered by mannitol but not by urea, suggesting a role of tonicity in FGF23 formation. Moreover, these changes in FGF23 were inversely proportional to the expression of NFAT5 (nuclear factor of activated T cells-5), a transcription factor responsible for tonicity-mediated cellular adaptations. Furthermore, arginine vasopressin, which is often responsible for hyponatremia, did not affect FGF23 production. Next, we performed a comprehensive and unbiased RNA-seq analysis of UMR-106 cells exposed to low versus high [Na+], which revealed several novel genes involved in cellular adaptation to altered tonicity. Additional analysis of cells with Crisp-Cas9-mediated NFAT5 deletion indicated that NFAT5 controls numerous genes associated with FGF23 synthesis, thereby confirming its role in [Na+]-mediated FGF23 regulation. In line with these in vitro observations, we found that hyponatremia patients have higher FGF23 levels. Our results suggest that [Na+] is a critical regulator of FGF23 synthesis.


Subject(s)
Fibroblast Growth Factor-23 , Sodium , Humans , Fibroblast Growth Factor-23/genetics , Fibroblast Growth Factor-23/metabolism , Hyponatremia/physiopathology , Renal Insufficiency, Chronic/physiopathology , Sodium/metabolism , Sodium/pharmacology , Cell Line, Tumor , Cell Line , Animals , Mice , Mice, Inbred C57BL , Arginine Vasopressin/metabolism , Osteoblasts/cytology , Osteoblasts/drug effects , Osteoblasts/metabolism , NFATC Transcription Factors/genetics , NFATC Transcription Factors/metabolism , Rats
5.
Kidney Int ; 104(1): 163-180, 2023 07.
Article in English | MEDLINE | ID: mdl-37088425

ABSTRACT

Systemic lupus erythematosus (SLE) is an autoimmune disorder characterized by autoreactive B cells and dysregulation of many other types of immune cells including myeloid cells. Lupus nephritis (LN) is a common target organ manifestations of SLE. Tonicity-responsive enhancer-binding protein (TonEBP, also known as nuclear factor of activated T-cells 5 (NFAT5)), was initially identified as a central regulator of cellular responses to hypertonic stress and is a pleiotropic stress protein involved in a variety of immunometabolic diseases. To explore the role of TonEBP, we examined kidney biopsy samples from patients with LN. Kidney TonEBP expression was found to be elevated in these patients compared to control patients - in both kidney cells and infiltrating immune cells. Kidney TonEBP mRNA was elevated in LN and correlated with mRNAs encoding inflammatory cytokines and the degree of proteinuria. In a pristane-induced SLE model in mice, myeloid TonEBP deficiency blocked the development of SLE and LN. In macrophages, engagement of various toll-like receptors (TLRs) that respond to damage-associated molecular patterns induced TonEBP expression via stimulation of its promoter. Intracellular signaling downstream of the TLRs was dependent on TonEBP. Therefore, TonEBP can act as a transcriptional cofactor for NF-κB, and activated mTOR-IRF3/7 via protein-protein interactions. Additionally, TonEBP-deficient macrophages displayed elevated efferocytosis and animals with myeloid deficiency of TonEBP showed reduced Th1 and Th17 differentiation, consistent with macrophages defective in TLR signaling. Thus, our data show that myeloid TonEBP may be an attractive therapeutic target for SLE and LN.


Subject(s)
Lupus Erythematosus, Systemic , Lupus Nephritis , Animals , Mice , Kidney , Signal Transduction , Macrophages , NFATC Transcription Factors
6.
Cell Commun Signal ; 20(1): 192, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36474295

ABSTRACT

BACKGROUND: Lysosomes are a central hub for cellular metabolism and are involved in the regulation of cell homeostasis through the degradation or recycling of unwanted or dysfunctional organelles through the autophagy pathway. Catalase, a peroxisomal enzyme, plays an important role in cellular antioxidant defense by decomposing hydrogen peroxide into water and oxygen. In accordance with pleiotropic significance, both impaired lysosomes and catalase have been linked to many age-related pathologies with a decline in lifespan. Aging is characterized by progressive accumulation of macromolecular damage and the production of high levels of reactive oxygen species. Although lysosomes degrade the most long-lived proteins and organelles via the autophagic pathway, the role of lysosomes and their effect on catalase during aging is not known. The present study investigated the role of catalase and lysosomal function in catalase-knockout (KO) mice. METHODS: We performed experiments on WT and catalase KO younger (9 weeks) and mature adult (53 weeks) male mice and Mouse embryonic fibroblasts isolated from WT and KO mice from E13.5 embryos as in vivo and in ex-vivo respectively. Mouse phenotyping studies were performed with controls, and a minimum of two independent experiments were performed with more than five mice in each group. RESULTS: We found that at the age of 53 weeks (mature adult), catalase-KO mice exhibited an aging phenotype faster than wild-type (WT) mice. We also found that mature adult catalase-KO mice induced leaky lysosome by progressive accumulation of lysosomal content, such as cathespin D, into the cytosol. Leaky lysosomes inhibited autophagosome formation and triggered impaired autophagy. The dysregulation of autophagy triggered mTORC1 (mechanistic target of rapamycin complex 1) activation. However, the antioxidant N-acetyl-L-cysteine and mTORC1 inhibitor rapamycin rescued leaky lysosomes and aging phenotypes in catalase-deficient mature adult mice. CONCLUSIONS: This study unveils the new role of catalase and its role in lysosomal function during aging. Video abstract.


Subject(s)
Fibroblasts , Lysosomes , Male , Mice , Animals
7.
Cell Commun Signal ; 20(1): 189, 2022 11 25.
Article in English | MEDLINE | ID: mdl-36434621

ABSTRACT

BACKGROUND: Autophagy is an intracellular degradation process crucial for homeostasis. During autophagy, a double-membrane autophagosome fuses with lysosome through SNARE machinery STX17 to form autolysosome for degradation of damaged organelle. Whereas defective autophagy enhances cholesterol accumulation in the lysosome and impaired autophagic flux that results Niemann-Pick type C1 (NPC1) disease. However, exact interconnection between NPC1 and autophagic flux remain obscure due to the existence of controversial reports. RESULTS: This study aimed at a comparison of the effects of three autophagic inhibitor drugs, including chloroquine, U18666A, and bafilomycin A1, on the intracellular cholesterol transport and autophagy flux. Chloroquine, an autophagic flux inhibitor; U1866A, a NPC1 inhibitor, and bafilomycin A, a lysosomotropic agent are well known to inhibit autophagy by different mechanism. Here we showed that treatment with U1866A and bafilomycin A induces lysosomal cholesterol accumulation that prevented autophagic flux by decreasing autophagosome-lysosome fusion. We also demonstrated that accumulation of cholesterol within the lysosome did not affect lysosomal pH. Although the clearance of accumulated cholesterol by cyclodextrin restored the defective autophagosome-lysosome fusion, the autophagy flux restoration was possible only when lysosomal acidification was not altered. In addition, a failure of STX17 trafficking to autophagosomes plays a key role in prevention of autophagy flux caused by intracellular cholesterol transport inhibitors. CONCLUSIONS: Our data provide a new insight that the impaired autophagy flux does not necessarily result in lysosomal cholesterol accumulation even though it prevents autophagosome-lysosome fusion. Video abstract.


Subject(s)
Autophagosomes , Autophagy , Autophagosomes/metabolism , Lysosomes/metabolism , Chloroquine/pharmacology , Chloroquine/metabolism , Cholesterol/metabolism
8.
Diabetes ; 71(12): 2557-2571, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36170666

ABSTRACT

The phenotypic and functional plasticity of adipose tissue macrophages (ATMs) during obesity plays a crucial role in orchestration of adipose and systemic inflammation. Tonicity-responsive enhancer binding protein (TonEBP) (also called NFAT5) is a stress protein that mediates cellular responses to a range of metabolic insults. Here, we show that myeloid cell-specific TonEBP depletion reduced inflammation and insulin resistance in mice with high-fat diet-induced obesity but did not affect adiposity. This phenotype was associated with a reduced accumulation and a reduced proinflammatory phenotype of metabolically activated macrophages, decreased expression of inflammatory factors related to insulin resistance, and enhanced insulin sensitivity. TonEBP expression was elevated in the ATMs of obese mice, and Sp1 was identified as a central regulator of TonEBP induction. TonEBP depletion in macrophages decreased induction of insulin resistance-related genes and promoted induction of insulin sensitivity-related genes under obesity-mimicking conditions and thereby improved insulin signaling and glucose uptake in adipocytes. mRNA expression of TonEBP in peripheral blood mononuclear cells was positively correlated with blood glucose levels in mice and humans. These findings suggest that TonEBP in macrophages promotes obesity-associated systemic insulin resistance and inflammation, and downregulation of TonEBP may induce a healthy metabolic state during obesity.


Subject(s)
Insulin Resistance , Humans , Mice , Animals , Insulin Resistance/genetics , NFATC Transcription Factors/metabolism , Leukocytes, Mononuclear/metabolism , Adipose Tissue/metabolism , Obesity/metabolism , Inflammation/metabolism , Mice, Obese , Myeloid Cells/metabolism , Insulin/metabolism , Mice, Inbred C57BL
9.
Proc Natl Acad Sci U S A ; 119(26): e2205626119, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35737830

ABSTRACT

ß-adrenergic receptor (ß-AR) signaling plays predominant roles in modulating energy expenditure by triggering lipolysis and thermogenesis in adipose tissue, thereby conferring obesity resistance. Obesity is associated with diminished ß3-adrenergic receptor (ß3-AR) expression and decreased ß-adrenergic responses, but the molecular mechanism coupling nutrient overload to catecholamine resistance remains poorly defined. Ten-eleven translocation (TET) proteins are dioxygenases that alter the methylation status of DNA by oxidizing 5-methylcytosine to 5-hydroxymethylcytosine and further oxidized derivatives. Here, we show that TET proteins are pivotal epigenetic suppressors of ß3-AR expression in adipocytes, thereby attenuating the responsiveness to ß-adrenergic stimulation. Deletion of all three Tet genes in adipocytes led to increased ß3-AR expression and thereby enhanced the downstream ß-adrenergic responses, including lipolysis, thermogenic gene induction, oxidative metabolism, and fat browning in vitro and in vivo. In mouse adipose tissues, Tet expression was elevated after mice ate a high-fat diet. Mice with adipose-specific ablation of all TET proteins maintained higher levels of ß3-AR in both white and brown adipose tissues and remained sensitive to ß-AR stimuli under high-fat diet challenge, leading to augmented energy expenditure and decreased fat accumulation. Consequently, they exhibited improved cold tolerance and were substantially protected from diet-induced obesity, inflammation, and metabolic complications, including insulin resistance and hyperlipidemia. Mechanistically, TET proteins directly repressed ß3-AR transcription, mainly in an enzymatic activity-independent manner, and involved the recruitment of histone deacetylases to increase deacetylation of its promoter. Thus, the TET-histone deacetylase-ß3-AR axis could be targeted to treat obesity and related metabolic diseases.


Subject(s)
Epigenesis, Genetic , Gene Expression Regulation , Proto-Oncogene Proteins , Adipose Tissue, Brown/metabolism , Animals , Gene Expression Regulation/genetics , Mice , Obesity/genetics , Obesity/metabolism , Proto-Oncogene Proteins/genetics , Receptors, Adrenergic, beta/genetics , Receptors, Adrenergic, beta/metabolism , Receptors, Adrenergic, beta-3/genetics , Receptors, Adrenergic, beta-3/metabolism , Thermogenesis/genetics
10.
Exp Mol Med ; 53(10): 1602-1611, 2021 10.
Article in English | MEDLINE | ID: mdl-34697388

ABSTRACT

Transcription-replication conflicts lead to DNA damage and genomic instability, which are closely related to human diseases. A major source of these conflicts is the formation of R-loops, which consist of an RNA-DNA hybrid and a displaced single-stranded DNA. Although these structures have been studied, many aspects of R-loop biology and R-loop-mediated genome instability remain unclear. Here, we demonstrate that thyroid hormone receptor-associated protein 3 (Thrap3) plays a critical role in regulating R-loop resolution. In cancer cells, Thrap3 interacts with DEAD-box helicase 5 (DDX5) and localizes to R-loops. Arginine-mediated methylation of DDX5 is required for its interaction with Thrap3, and the Thrap3-DDX5 axis induces the recruitment of 5'-3' exoribonuclease 2 (XRN2) into R-loops. Loss of Thrap3 increases R-loop accumulation and DNA damage. These findings suggest that Thrap3 mediates resistance to cell death by preventing R-loop accumulation in cancer cells.


Subject(s)
R-Loop Structures , Transcription Factors , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , DNA/genetics , DNA-Binding Proteins/metabolism , Genomic Instability , Humans , RNA , Transcription Factors/genetics
11.
DNA Repair (Amst) ; 104: 103132, 2021 08.
Article in English | MEDLINE | ID: mdl-34049076

ABSTRACT

Lack of coordination between the DNA replication and transcription machineries can increase the frequency of transcription-replication conflicts, leading ultimately to DNA damage and genomic instability. A major source of these conflicts is the formation of R-loops, which consist of a transcriptionally generated RNA-DNA hybrid and the displaced single-stranded DNA. R-loops play important physiological roles and have been implicated in human diseases. Although these structures have been extensively studied, many aspects of R-loop biology and R-loop-mediated genome instability remain unclear. We found that in cancer cells, tonicity-responsive enhancer-binding protein (TonEBP, also called NFAT5) interacted with PARP1 and localized to R-loops in response to DNA-damaging agent camptothecin (CPT), which is associated with R-loop formation. PARP1-mediated PARylation was required for recruitment of TonEBP to the sites of R-loop-associated DNA damage. Loss of TonEBP increased levels of R-loop accumulation and DNA damage, and promoted cell death in response to CPT. These findings suggest that TonEBP mediates resistance to CPT-induced cell death by preventing R-loop accumulation in cancer cells.


Subject(s)
DNA Damage , DNA Replication , Genomic Instability , Poly (ADP-Ribose) Polymerase-1/metabolism , R-Loop Structures , Transcription Factors/metabolism , Transcription, Genetic , Camptothecin/toxicity , Cell Line , DNA/metabolism , DNA, Single-Stranded/metabolism , HEK293 Cells , Hep G2 Cells , Humans , Poly ADP Ribosylation
12.
Nucleic Acids Res ; 49(1): 269-284, 2021 01 11.
Article in English | MEDLINE | ID: mdl-33313823

ABSTRACT

R-loops are three-stranded, RNA-DNA hybrid, nucleic acid structures produced due to inappropriate processing of newly transcribed RNA or transcription-replication collision (TRC). Although R-loops are important for many cellular processes, their accumulation causes genomic instability and malignant diseases, so these structures are tightly regulated. It was recently reported that R-loop accumulation is resolved by methyltransferase-like 3 (METTL3)-mediated m6A RNA methylation under physiological conditions. However, it remains unclear how R-loops in the genome are recognized and induce resolution signals. Here, we demonstrate that tonicity-responsive enhancer binding protein (TonEBP) recognizes R-loops generated by DNA damaging agents such as ultraviolet (UV) or camptothecin (CPT). Single-molecule imaging and biochemical assays reveal that TonEBP preferentially binds a R-loop via both 3D collision and 1D diffusion along DNA in vitro. In addition, we find that TonEBP recruits METTL3 to R-loops through the Rel homology domain (RHD) for m6A RNA methylation. We also show that TonEBP recruits RNaseH1 to R-loops through a METTL3 interaction. Consistent with this, TonEBP or METTL3 depletion increases R-loops and reduces cell survival in the presence of UV or CPT. Collectively, our results reveal an R-loop resolution pathway by TonEBP and m6A RNA methylation by METTL3 and provide new insights into R-loop resolution processes.


Subject(s)
Adenosine/analogs & derivatives , DNA Replication/genetics , Methyltransferases/physiology , R-Loop Structures/genetics , Transcription Factors/physiology , Adenosine/metabolism , Cell Line, Tumor , DNA/genetics , DNA/metabolism , DNA Adducts/metabolism , DNA Damage , Diffusion , HEK293 Cells , Humans , Methylation , Protein Binding , Protein Interaction Mapping , R-Loop Structures/radiation effects , Ribonuclease H/physiology , Ultraviolet Rays
13.
J Neuroinflammation ; 17(1): 372, 2020 Dec 08.
Article in English | MEDLINE | ID: mdl-33292328

ABSTRACT

BACKGROUND: Microglia are brain-resident myeloid cells involved in the innate immune response and a variety of neurodegenerative diseases. In macrophages, TonEBP is a transcriptional cofactor of NF-κB which stimulates the transcription of pro-inflammatory genes in response to LPS. Here, we examined the role of microglial TonEBP. METHODS: We used microglial cell line, BV2 cells. TonEBP was knocked down using lentiviral transduction of shRNA. In animals, TonEBP was deleted from myeloid cells using a line of mouse with floxed TonEBP. Cerulenin was used to block the NF-κB cofactor function of TonEBP. RESULTS: TonEBP deficiency blocked the LPS-induced expression of pro-inflammatory cytokines and enzymes in association with decreased activity of NF-κB in BV2 cells. We found that there was also a decreased activity of AP-1 and that TonEBP was a transcriptional cofactor of AP-1 as well as NF-κB. Interestingly, we found that myeloid-specific TonEBP deletion blocked the LPS-induced microglia activation and subsequent neuronal cell death and memory loss. Cerulenin disrupted the assembly of the TonEBP/NF-κB/AP-1/p300 complex and suppressed the LPS-induced microglial activation and the neuronal damages in animals. CONCLUSIONS: TonEBP is a key mediator of microglial activation and neuroinflammation relevant to neuronal damage. Cerulenin is an effective blocker of the TonEBP actions.


Subject(s)
Inflammation Mediators/metabolism , Lipopolysaccharides/toxicity , Memory Disorders/metabolism , Microglia/metabolism , NF-kappa B/metabolism , Transcription Factors/metabolism , Animals , Avoidance Learning/drug effects , Avoidance Learning/physiology , Cell Line , Cerulenin/pharmacology , Gene Regulatory Networks/drug effects , Gene Regulatory Networks/physiology , Male , Memory Disorders/chemically induced , Mice , Mice, Inbred C57BL , Mice, Transgenic , Transcription Factors/antagonists & inhibitors
14.
Cells ; 9(9)2020 08 20.
Article in English | MEDLINE | ID: mdl-32825390

ABSTRACT

The endoplasmic reticulum (ER) stress response and autophagy are important cellular responses that determine cell fate and whose dysregulation is implicated in the perturbation of homeostasis and diseases. Tonicity-responsive enhancer-binding protein (TonEBP, also called NFAT5) is a pleiotropic stress protein that mediates both protective and pathological cellular responses. Here, we examined the role of TonEBP in ß-cell survival under ER stress. We found that TonEBP increases ß-cell survival under ER stress by enhancing autophagy. The level of TonEBP protein increased under ER stress due to a reduction in its degradation via the ubiquitin-proteasome pathway. In response to ER stress, TonEBP increased autophagosome formations and suppressed the accumulation of protein aggregates and ß-cell death. The Rel-homology domain of TonEBP interacted with FIP200, which is essential for the initiation of autophagy, and was required for autophagy and cell survival upon exposure to ER stress. Mice in which TonEBP was specifically deleted in pancreatic endocrine progenitor cells exhibited defective glucose homeostasis and a loss of islet mass. Taken together, these findings demonstrate that TonEBP protects against ER stress-induced ß-cell death by enhancing autophagy.


Subject(s)
Endoplasmic Reticulum Stress/physiology , NFATC Transcription Factors/metabolism , Autophagy , Cell Survival , Humans
15.
EBioMedicine ; 58: 102926, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32739873

ABSTRACT

BACKGROUND: High recurrence and chemoresistance drive the high mortality in hepatocellular carcinoma (HCC). Although cancer stem cells are considered to be the source of recurrent and chemoresistant tumors, they remain poorly defined in HCC. Tonicity-responsive enhancer binding protein (TonEBP) is elevated in almost all HCC tumors and associated with recurrence and death. We aimed to identify function of TonEBP in stemness and chemoresistance of liver cancer. METHODS: Tumors obtained from 280 HCC patients were analyzed by immunohistochemical analyses. Stemness and chemoresistance of liver CSCs (LCSCs) were investigated using cell culture. Tumor-initiating activity was measured by implanting LCSCs into BALB/c nude mice. FINDINGS: Expression of TonEBP is higher in LCSCs in HCC cell lines and correlated with markers of LCSCs whose expression is significantly associated with poor prognosis of HCC patients. TonEBP mediates ATM-mediated activation of NF-κB, which stimulates the promoter of a key stem cell transcription factor SOX2. As expected, TonEBP is required for the tumorigenesis and self-renewal of LSCSs. Cisplatin induces the recruitment of the ERCC1/XPF dimer to the chromatin in a TonEBP-dependent manner leading to DNA repair and cisplatin resistance. The cisplatin-induced inflammation in LSCSs is also dependent on the TonEBP-ERCC1/XPF complex, and leads to enhanced stemness via the ATM-NF-κB-SOX2 pathway. In HCC patients, tumor expression of ERCC1/XPF predicts recurrence and death in a TonEBP-dependent manner. INTERPRETATION: TonEBP promotes stemness and cisplatin resistance of HCC via ATM-NF-κB. TonEBP is a key regulator of LCSCs and a promising therapeutic target for HCC and its recurrence.


Subject(s)
Carcinoma, Hepatocellular/pathology , DNA-Binding Proteins/metabolism , Drug Resistance, Neoplasm , Endonucleases/metabolism , Liver Neoplasms/pathology , Neoplastic Stem Cells/pathology , Transcription Factors/genetics , Animals , Biomarkers, Tumor/metabolism , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Cell Line, Tumor , Cisplatin/pharmacology , Female , Gene Expression Regulation, Neoplastic , Humans , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Middle Aged , Neoplastic Stem Cells/metabolism , Prognosis , Up-Regulation , Xenograft Model Antitumor Assays
16.
Cell Death Dis ; 11(6): 421, 2020 06 04.
Article in English | MEDLINE | ID: mdl-32499518

ABSTRACT

Dendritic cells (DCs) are potent antigen-presenting cells that link the innate and adaptive immune responses; as such they play pivotal roles in initiation and progression of rheumatoid arthritis (RA). Here, we report that the tonicity-responsive enhancer-binding protein (TonEBP or NFAT5), a Rel family protein involved in the pathogenesis of autoimmune disease and inflammation, is required for maturation and function of DCs. Myeloid cell-specific TonEBP deletion reduces disease severity in a murine model of collagen-induced arthritis; it also inhibits maturation of DCs and differentiation of pathogenic Th1 and Th17 cells in vivo. Upon stimulation by TLR4, TonEBP promotes surface expression of major histocompatibility complex class II and co-stimulatory molecules via p38 mitogen-activated protein kinase. This is followed by DC-mediated differentiation of pro-inflammatory Th1 and Th17 cells. Taken together, these findings provide mechanistic basis for the pathogenic role of TonEBP in RA and possibly other autoimmune diseases.


Subject(s)
Dendritic Cells/metabolism , Inflammation/immunology , NFATC Transcription Factors/metabolism , Th1 Cells/immunology , Th17 Cells/immunology , Animals , Arthritis, Experimental/immunology , Arthritis, Experimental/pathology , Cell Differentiation/immunology , Cell Proliferation , Disease Models, Animal , Lipopolysaccharides , Lymphocyte Activation/immunology , Male , Mice, Inbred C57BL , Models, Biological , Myeloid Cells/metabolism , NFATC Transcription Factors/deficiency , Severity of Illness Index , T-Lymphocytes/immunology , p38 Mitogen-Activated Protein Kinases/metabolism
17.
Nat Rev Nephrol ; 16(6): 352-364, 2020 06.
Article in English | MEDLINE | ID: mdl-32157251

ABSTRACT

Tonicity-responsive enhancer-binding protein (TonEBP), which is also known as nuclear factor of activated T cells 5 (NFAT5), was discovered 20 years ago as a transcriptional regulator of the cellular response to hypertonic (hyperosmotic salinity) stress in the renal medulla. Numerous studies since then have revealed that TonEBP is a pleiotropic stress protein that is involved in a range of immunometabolic diseases. Some of the single-nucleotide polymorphisms (SNPs) in TONEBP introns are cis-expression quantitative trait loci that affect TONEBP transcription. These SNPs are associated with increased risk of type 2 diabetes mellitus, diabetic nephropathy, inflammation, high blood pressure and abnormal plasma osmolality, indicating that variation in TONEBP expression might contribute to these phenotypes. In addition, functional studies have shown that TonEBP is involved in the pathogenesis of rheumatoid arthritis, atherosclerosis, diabetic nephropathy, acute kidney injury, hyperlipidaemia and insulin resistance, autoimmune diseases (including type 1 diabetes mellitus and multiple sclerosis), salt-sensitive hypertension and hepatocellular carcinoma. These pathological activities of TonEBP are in contrast to the protective actions of TonEBP in response to hypertonicity, bacterial infection and DNA damage induced by genotoxins. An emerging theme is that TonEBP is a stress protein that mediates the cellular response to a range of pathological insults, including excess caloric intake, inflammation and oxidative stress.


Subject(s)
Autoimmune Diseases/metabolism , DNA Damage/physiology , NFATC Transcription Factors/metabolism , Stress, Physiological/physiology , Arthritis, Rheumatoid/metabolism , Atherosclerosis/metabolism , Bacterial Infections/metabolism , Carcinoma, Hepatocellular/metabolism , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Diabetic Nephropathies/genetics , Diabetic Nephropathies/metabolism , Heat-Shock Proteins , Humans , Hyperlipidemias/metabolism , Hypertension/genetics , Hypertension/metabolism , Insulin Resistance , Liver Neoplasms/metabolism , NFATC Transcription Factors/genetics , NFATC Transcription Factors/physiology , Obesity/metabolism , Oxidative Stress/physiology , Polymorphism, Single Nucleotide , Salt Stress/physiology , Virus Diseases/metabolism
18.
Cells ; 8(10)2019 10 20.
Article in English | MEDLINE | ID: mdl-31635160

ABSTRACT

TonEBP (tonicity-responsive enhancer binding protein) is a transcriptional regulator whose expression is elevated in response to various forms of stress including hyperglycemia, inflammation, and hypoxia. Here we investigated the role of TonEBP in acute kidney injury (AKI) using a line of TonEBP haplo-deficient mice subjected to bilateral renal ischemia followed by reperfusion (I/R). In the TonEBP haplo-deficient animals, induction of TonEBP, oxidative stress, inflammation, cell death, and functional injury in the kidney in response to I/R were all reduced. Analyses of renal transcriptome revealed that genes in several cellular pathways including peroxisome and mitochondrial inner membrane were suppressed in response to I/R, and the suppression was relieved in the TonEBP deficiency. Production of reactive oxygen species (ROS) and the cellular injury was reproduced in a renal epithelial cell line in response to hypoxia, ATP depletion, or hydrogen peroxide. The knockdown of TonEBP reduced ROS production and cellular injury in correlation with increased expression of the suppressed genes. The cellular injury was also blocked by inhibitors of necrosis. These results demonstrate that ischemic insult suppresses many genes involved in cellular metabolism leading to local oxidative stress by way of TonEBP induction. Thus, TonEBP is a promising target to prevent AKI.


Subject(s)
Acute Kidney Injury/metabolism , NFATC Transcription Factors/metabolism , Acute Kidney Injury/genetics , Adenosine Triphosphate/metabolism , Animals , Apoptosis/drug effects , Apoptosis/genetics , Blotting, Western , Cell Hypoxia/genetics , Cell Hypoxia/physiology , Cell Line , Cell Survival/genetics , Cell Survival/physiology , Gene Expression Regulation/drug effects , Humans , Hydrogen Peroxide/pharmacology , Immunohistochemistry , Male , Mice , Mice, Inbred C57BL , NFATC Transcription Factors/genetics , Oxidative Stress/drug effects , Oxidative Stress/genetics , Peroxisomes/metabolism , Reactive Oxygen Species/metabolism , Real-Time Polymerase Chain Reaction
19.
iScience ; 19: 177-190, 2019 Sep 27.
Article in English | MEDLINE | ID: mdl-31376680

ABSTRACT

Polyubiquitination of proliferating cell nuclear antigen (PCNA) regulates the error-free template-switching mechanism for the bypass of DNA lesions during DNA replication. PCNA polyubiquitination is critical for the maintenance of genomic integrity; however, the underlying mechanism is poorly understood. Here, we demonstrate that tonicity-responsive enhancer-binding protein (TonEBP) regulates PCNA polyubiquitination in response to DNA damage. TonEBP was recruited to DNA damage sites with bulky adducts and sequentially recruited E3 ubiquitin ligase SHPRH, followed by deubiquitinase USP1, to DNA damage sites, in correlation with the dynamics of PCNA polyubiquitination. Similarly, TonEBP was found to be required for replication fork protection in response to DNA damage. The Rel-homology domain of TonEBP, which encircles DNA, was essential for the interaction with SHPRH and USP1, PCNA polyubiquitination, and cell survival after DNA damage. The present findings suggest that TonEBP is an upstream regulator of PCNA polyubiquitination and of the DNA damage bypass pathway.

20.
Nat Commun ; 10(1): 3536, 2019 08 06.
Article in English | MEDLINE | ID: mdl-31387996

ABSTRACT

Tonicity-responsive enhancer binding protein (TonEBP or NFAT5) is a regulator of cellular adaptation to hypertonicity, macrophage activation and T-cell development. Here we report that TonEBP is an epigenetic regulator of thermogenesis and obesity. In mouse subcutaneous adipocytes, TonEBP expression increases > 50-fold in response to high-fat diet (HFD) feeding. Mice with TonEBP haplo-deficiency or adipocyte-specific TonEBP deficiency are resistant to HFD-induced obesity and metabolic defects (hyperglycemia, hyperlipidemia, and hyperinsulinemia). They also display increased oxygen consumption, resistance to hypothermia, and beiging of subcutaneous fat tissues. TonEBP suppresses the promoter of ß3-adrenoreceptor gene, a critical regulator of lipolysis and thermogenesis, in ex vivo and cultured adipocytes. This involves recruitment of DNMT1 DNA methylase and methylation of the promoter. In human subcutaneous adipocytes TonEBP expression displays a correlation with body mass index but an inverse correlation with ß3-adrenoreceptor expression. Thus, TonEBP is an attractive therapeutic target for obesity, insulin resistance, and hyperlipidemia.


Subject(s)
Epigenesis, Genetic , Insulin Resistance/genetics , Obesity/metabolism , Transcription Factors/metabolism , 3T3 Cells , Adipocytes/metabolism , Adipose Tissue, Beige/cytology , Adipose Tissue, Beige/metabolism , Animals , Body Mass Index , DNA (Cytosine-5-)-Methyltransferase 1/metabolism , DNA Methylation/genetics , Diet, High-Fat/adverse effects , Disease Models, Animal , Energy Metabolism/genetics , HEK293 Cells , Humans , Male , Mice , Mice, Transgenic , MicroRNAs/genetics , MicroRNAs/metabolism , Obesity/etiology , Primary Cell Culture , Receptors, Adrenergic, beta-3/metabolism , Subcutaneous Fat/cytology , Subcutaneous Fat/metabolism , Thermogenesis/genetics , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL