Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Transl Med ; 16(739): eadj0616, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38507468

ABSTRACT

Complete sequestration of central nervous system tissue and cerebrospinal fluid by the dural membrane is fundamental to maintaining homeostasis and proper organ function, making reconstruction of this layer an essential step during neurosurgery. Primary closure of the dura by suture repair is the current standard, despite facing technical, microenvironmental, and anatomic challenges. Here, we apply a mechanically tough hydrogel paired with a bioadhesive for intraoperative sealing of the dural membrane in rodent, porcine, and human central nervous system tissue. Tensile testing demonstrated that this dural tough adhesive (DTA) exhibited greater toughness with higher maximum stress and stretch compared with commercial sealants in aqueous environments. To evaluate the performance of DTA in the range of intracranial pressure typical of healthy and disease states, ex vivo burst pressure testing was conducted until failure after DTA or commercial sealant application on ex vivo porcine dura with a punch biopsy injury. In contrast to commercial sealants, DTA remained adhered to the porcine dura through increasing pressure up to 300 millimeters of mercury and achieved a greater maximum burst pressure. Feasibility of DTA to repair cerebrospinal fluid leak in a simulated surgical context was evaluated in postmortem human dural tissue. DTA supported effective sutureless repair of the porcine thecal sac in vivo. Biocompatibility and adhesion of DTA was maintained for up to 4 weeks in rodents after implantation. The findings suggest the potential of DTA to augment or perhaps even supplant suture repair and warrant further exploration.


Subject(s)
Hydrogels , Tissue Adhesives , Humans , Animals , Swine , Hydrogels/pharmacology , Cerebrospinal Fluid Leak/surgery , Neurosurgical Procedures , Dura Mater/surgery , Central Nervous System , Tissue Adhesives/pharmacology
2.
Proc Natl Acad Sci U S A ; 121(9): e2304643121, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38377210

ABSTRACT

Generating strong rapid adhesion between hydrogels has the potential to advance the capabilities of modern medicine and surgery. Current hydrogel adhesion technologies rely primarily on liquid-based diffusion mechanisms and the formation of covalent bonds, requiring prolonged time to generate adhesion. Here, we present a simple and versatile strategy using dry chitosan polymer films to generate instant adhesion between hydrogel-hydrogel and hydrogel-elastomer surfaces. Using this approach we can achieve extremely high adhesive energies (>3,000 J/m2), which are governed by pH change and non-covalent interactions including H-bonding, Van der Waals forces, and bridging polymer entanglement. Potential examples of biomedical applications are presented, including local tissue cooling, vascular sealing, prevention of surgical adhesions, and prevention of hydrogel dehydration. We expect these findings and the simplicity of this approach to have broad implications for adhesion strategies and hydrogel design.


Subject(s)
Adhesives , Polymers , Humans , Tissue Adhesions/prevention & control , Adhesives/chemistry , Elastomers , Hydrogels/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...