Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 106
Filter
1.
Opt Express ; 32(8): 13048-13064, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38859285

ABSTRACT

We propose and demonstrate an angularly offset multiline (AOML) dispersive silicon nitride optical phased array (OPA) that enables efficient line beam scanning with an expanded field of view (FOV) and plateau envelope. The suggested AOML OPA incorporates multiline OPA units, which were seamlessly integrated with a 45° angular offset through a thermo-optic switch based on a multimode interference coupler, resulting in a wide FOV that combines three consecutive scanning ranges. Simultaneously, a periodic diffraction envelope rendered by the multiline OPA units contributes to reduced peak intensity fluctuation of the main lobe across the large FOV. An expedient polishing enabling the angled facet was diligently accomplished through the implementation of oblique polishing techniques applied to the 90° angle of the chip. For each dispersive OPA unit, we engineered an array of delay lines with progressively adjustable delay lengths, enabling a passive wavelength-tunable beam scanning. Experimental validation of the proposed OPA revealed efficient beam scanning, achieved by wavelength tuning from 1530 to 1600 nm and seamless switching between multiline OPAs, yielding an FOV of 152° with a main lobe intensity fluctuation of 2.8 dB. The measured efficiency of dispersive scanning was estimated at 0.97°/nm, as intended.

2.
Am J Physiol Gastrointest Liver Physiol ; 327(1): G57-G69, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38713616

ABSTRACT

Inflammatory bowel disease (IBD) encompasses several debilitating chronic gastrointestinal (GI) inflammatory disorders, including Crohn's disease and ulcerative colitis. In both conditions, mucosal inflammation is a key clinical presentation associated with altered serotonin (5-hydroxytryptamine or 5-HT) signaling. This altered 5-HT signaling is also found across various animal models of colitis. Of the 14 known receptor subtypes, 5-HT receptor type 7 (5-HT7) is one of the most recently discovered. We previously reported that blocking 5-HT signaling with either a selective 5-HT7 receptor antagonist (SB-269970) or genetic ablation alleviated intestinal inflammation in murine experimental models of colitis. Here, we developed novel antagonists, namely, MC-170073 and MC-230078, which target 5-HT7 receptors with high selectivity. We also investigated the in vivo efficacy of these antagonists in experimental colitis by using dextran sulfate sodium (DSS) and the transfer of CD4+CD45RBhigh T cells to induce intestinal inflammation. Inhibition of 5-HT7 receptor signaling with the antagonists, MC-170073 and MC-230078, ameliorated intestinal inflammation in both acute and chronic colitis models, which was accompanied by lower histopathological damage and diminished levels of proinflammatory cytokines compared with vehicle-treated controls. Together, the data reveal that the pharmacological inhibition of 5-HT7 receptors by these selective antagonists ameliorates the severity of colitis across various experimental models and may, in the future, serve as a potential treatment option for patients with IBD. In addition, these findings support that 5-HT7 is a viable therapeutic target for IBD.NEW & NOTEWORTHY This study demonstrates that the novel highly selective 5-HT7 receptor antagonists, MC-170073 and MC-230078, significantly alleviated the severity of colitis across models of experimental colitis. These findings suggest that inhibition of 5-HT7 receptor signaling by these new antagonists may serve as an alternative mode of treatment to diminish symptomology in those with inflammatory bowel disease.


Subject(s)
Colitis , Receptors, Serotonin , Serotonin Antagonists , Animals , Receptors, Serotonin/metabolism , Receptors, Serotonin/drug effects , Colitis/drug therapy , Colitis/immunology , Colitis/pathology , Mice , Serotonin Antagonists/pharmacology , Mice, Inbred C57BL , Disease Models, Animal , Dextran Sulfate , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Intestinal Mucosa/immunology , Signal Transduction/drug effects , Severity of Illness Index , Colon/drug effects , Colon/pathology , Colon/metabolism , Colon/immunology , Male
3.
Opt Express ; 32(6): 9171-9183, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38571156

ABSTRACT

This study proposes a solid-state two-dimensional beam-steering device based on an electro-optical phased array (EOPA) in thin-film lithium niobate (TFLN) and silicon nitride (SiN) hybrid platforms, thereby eliminating the requirement for the direct etching of TFLN. Electro-optic (EO) phase modulator array comprises cascaded multimode interference couplers with an SiN strip-loaded TFLN configuration, which is designed and fabricated via i-line photolithography. Each EO modulator element with an interaction region length of 1.56 cm consumed a minimum power of 3.2 pJ/π under a half-wave voltage of 3.64 V and had an estimated modulation speed of 1.2 GHz. Subsequently, an SiN dispersive antenna with a waveguide grating was tethered to the modulator array to form an EOPA, facilitating the out-of-plane radiation of highly defined near-infrared beams. A prepared EOPA utilized EO phase control and wavelength tuning near 1550 nm to achieve a field-of-view of 22° × 5° in the horizontal and vertical directions. The proposed hybrid integrated platform can potentially facilitate low-power and high-speed beam steering.

4.
J Nat Prod ; 87(3): 591-599, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38442389

ABSTRACT

A new polyol polyketide, named retinestatin (1), was obtained and characterized from the culture of a Streptomyces strain, which was isolated from a subterranean nest of the termite Reticulitermes speratus kyushuensis Morimoto. The planar structure of 1 was elucidated on the basis of the cumulative analysis of ultraviolet, infrared, mass spectrometry, and nuclear magnetic resonance spectroscopic data. The absolute configuration of 1 at 12 chiral centers was successfully assigned by employing a J-based configuration analysis in combination with ROESY correlations, a quantum mechanics-based computational approach to calculate NMR chemical shifts, and a 3 min flash esterification by Mosher's reagents followed by NMR analysis. Biological evaluation of retinestatin (1) using an in vitro model of Parkinson's disease revealed that 1 protected SH-SY5Y dopaminergic cells from MPP+-induced cytotoxicity, indicating its neuroprotective effects.


Subject(s)
Isoptera , Neuroblastoma , Polyketides , Polymers , Streptomyces , Animals , Humans , Polyketides/chemistry , Molecular Structure , Streptomyces/chemistry
5.
Sci Rep ; 14(1): 7410, 2024 03 28.
Article in English | MEDLINE | ID: mdl-38548749

ABSTRACT

Mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4) has recently emerged as a promising therapeutic target in cancer. In this study, we explored the biological function of MAP4K4 in radioresistant breast cancer cells using two MAP4K4 inhibitors, namely PF06260933 and GNE-495. Radioresistant SR and MR cells were established by exposing SK-BR-3 and MCF-7 breast cancer cells to 48-70 Gy of radiation delivered at 4-5 Gy twice a week over 10 months. Surprisingly, although radioresistant cells were derived from two different subtypes of breast cancer cell lines, MAP4K4 was significantly elevated regardless of subtype. Inhibition of MAP4K4 with PF06260933 or GNE-495 selectively targeted radioresistant cells and improved the response to irradiation. Furthermore, MAP4K4 inhibitors induced apoptosis through the accumulation of DNA damage by inhibiting DNA repair systems in radioresistant cells. Notably, Inhibition of MAP4K4 suppressed the expressions of ACSL4, suggesting that MAP4K4 functioned as an upstream effector of ACSL4. This study is the first to report that MAP4K4 plays a crucial role in mediating the radioresistance of breast cancer by acting upstream of ACSL4 to enhance DNA damage response and inhibit apoptosis. We hope that our findings provide a basis for the development of new drugs targeting MAP4K4 to overcome radioresistance.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/genetics , Cell Line, Tumor , Radiation Tolerance/genetics , DNA Repair , MCF-7 Cells , Apoptosis/radiation effects , Protein Serine-Threonine Kinases/metabolism , Intracellular Signaling Peptides and Proteins/metabolism
6.
Biomed Pharmacother ; 173: 116335, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38422661

ABSTRACT

Accumulating evidence indicates that microbial communities in the human body crucially affect health through the production of chemical messengers. However, the relationship between human microbiota and cancer has been underexplored. As a result of a biochemical investigation of the commensal oral microbe, Corynebacterium durum, we identified the non-enzymatic transformation of tryptamine into an anticancer compound, durumamide A (1). The structure of 1 was determined using LC-MS and NMR data analysis as bis(indolyl)glyoxylamide, which was confirmed using one-pot synthesis and X-ray crystallographic analysis, suggesting that 1 is an oxidative dimer of tryptamine. Compound 1 displayed cytotoxic activity against various cancer cell lines with IC50 values ranging from 25 to 35 µM. A drug affinity responsive target stability assay revealed that survivin is the direct target protein responsible for the anticancer effect of 1, which subsequently induces apoptosis-inducing factor (AIF)-mediated apoptosis. Inspired by the chemical structure and bioactivity of 1, a new derivative, durumamide B (2), was synthesized using another indole-based neurotransmitter, serotonin. The anticancer properties of 2 were similar to those of 1; however, it was less active. These findings reinforce the notion of human microbiota-host interplay by showing that 1 is naturally produced from the human microbial metabolite, tryptamine, which protects the host against cancer.


Subject(s)
Antineoplastic Agents , Corynebacterium , Neoplasms , Humans , Survivin , Apoptosis , Apoptosis Inducing Factor , Tryptamines/pharmacology , Tryptamines/therapeutic use , Neoplasms/drug therapy , Antineoplastic Agents/therapeutic use , Oxidative Stress , Cell Line, Tumor , Structure-Activity Relationship , Drug Screening Assays, Antitumor , Molecular Structure , Cell Proliferation
7.
EMBO Rep ; 24(10): e57600, 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37671834

ABSTRACT

Adipocytes are critical regulators of metabolism and energy balance. While white adipocyte dysfunction is a hallmark of obesity-associated disorders, thermogenic adipocytes are linked to cardiometabolic health. As adipocytes dynamically adapt to environmental cues by functionally switching between white and thermogenic phenotypes, a molecular understanding of this plasticity could help improving metabolism. Here, we show that the lncRNA Apoptosis associated transcript in bladder cancer (AATBC) is a human-specific regulator of adipocyte plasticity. Comparing transcriptional profiles of human adipose tissues and cultured adipocytes we discovered that AATBC was enriched in thermogenic conditions. Using primary and immortalized human adipocytes we found that AATBC enhanced the thermogenic phenotype, which was linked to increased respiration and a more fragmented mitochondrial network. Expression of AATBC in adipose tissue of mice led to lower plasma leptin levels. Interestingly, this association was also present in human subjects, as AATBC in adipose tissue was inversely correlated with plasma leptin levels, BMI, and other measures of metabolic health. In conclusion, AATBC is a novel obesity-linked regulator of adipocyte plasticity and mitochondrial function in humans.

8.
Mar Drugs ; 21(9)2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37755113

ABSTRACT

Two new proton-deficient metabolites, tandocyclinones A and B (1 and 2), were discovered via the chemical profiling of the Streptomyces sp. strain TDH03, which was isolated from a marine sediment sample collected from the intertidal mudflat in Tando Port, the Republic of Korea. The structures of 1 and 2 were elucidated as new ether-bridged C-glycosyl benz[a]anthracenes by using a combination of spectroscopic analyses of ultraviolet (UV) and mass spectrometry (MS) data, along with nuclear magnetic resonance (NMR) spectra, which were acquired in tetrahydrofuran (THF)-d8 selected after an extensive search for a solvent, resulting in mostly observable exchangeable protons in the 1H NMR spectrum. Their configurations were successfully assigned by applying a J-based configuration analysis, rotating-frame Overhauser enhancement spectroscopy (ROESY) NMR correlations, chemical derivatization methods based on NMR (a modified version of Mosher's method) and circular dichroism (CD) (Snatzke's method using Mo2(OAc)4-induced CD), as well as quantum-mechanics-based computational methods, to calculate the electronic circular dichroism (ECD). Tandocyclinones A and B (1 and 2) were found to have weak antifungal activity against Trichophyton mentagrophytes IFM40996 with an MIC value of 128 µg/mL (244 and 265 µM for 1 and 2, respectively). A further biological evaluation revealed that tandocyclinone A (1) displayed inhibitory activity against Mycobacterium avium (MIC50 = 40.8 µM) and antiproliferative activity against SNU638 and HCT116 cancer cells, with IC50 values of 31.9 µM and 49.4 µM, respectively.

9.
J Am Chem Soc ; 145(36): 19676-19690, 2023 09 13.
Article in English | MEDLINE | ID: mdl-37642383

ABSTRACT

A targeted and logical discovery method was devised for natural products containing piperazic acid (Piz), which is biosynthesized from ornithine by l-ornithine N-hydroxylase (KtzI) and N-N bond formation enzyme (KtzT). Genomic signature-based screening of a bacterial DNA library (2020 strains) using polymerase chain reaction (PCR) primers targeting ktzT identified 62 strains (3.1%). The PCR amplicons of KtzT-encoding genes were phylogenetically analyzed to classify the 23 clades into two monophyletic groups, I and II. Cultivating hit strains in media supplemented with 15NH4Cl and applying 1H-15N heteronuclear multiple bond correlation (HMBC) along with 1H-15N heteronuclear single quantum coherence (HSQC) and 1H-15N HSQC-total correlation spectroscopy (HSQC-TOCSY) NMR experiments detected the spectroscopic signatures of Piz and modified Piz. Chemical investigation of the hit strains prioritized by genomic and spectroscopic signatures led to the identification of a new azinothricin congener, polyoxyperuin B seco acid (1), previously reported chloptosin (2) in group I, depsidomycin D (3) incorporating two dehydropiperazic acids (Dpz), and lenziamides A and B (4 and 5), structurally novel 31-membered cyclic decapeptides in group II. By consolidating the phylogenetic and chemical analyses, clade-structure relationships were elucidated for 19 of the 23 clades. Lenziamide A (4) inhibited STAT3 activation and induced G2/M cell cycle arrest, apoptotic cell death, and tumor growth suppression in human colorectal cancer cells. Moreover, lenziamide A (4) resensitized 5-fluorouracil (5-FU) activity in both in vitro cell cultures and the in vivo 5-FU-resistant tumor xenograft mouse model. This work demonstrates that the genomic and spectroscopic signature-based searches provide an efficient and general strategy for new bioactive natural products containing specific structural motifs.


Subject(s)
Biological Products , Genomics , Humans , Animals , Mice , Phylogeny , Spectrum Analysis , Biological Products/pharmacology
10.
Biomedicines ; 11(5)2023 May 14.
Article in English | MEDLINE | ID: mdl-37239114

ABSTRACT

Macrophage adenosine monophosphate-activated protein kinase (AMPK) limits the development of experimental colitis. AMPK activation inhibits NADPH oxidase (NOX) 2 expression, reactive oxygen species (ROS) generation, and pro-inflammatory cytokine secretion in macrophages during inflammation, while increased NOX2 expression is reported in experimental models of colitis and inflammatory bowel disease (IBD) patients. Although there are reductions in AMPK activity in IBD, it remains unclear whether targeted inhibition of NOX2 in the presence of defective AMPK can reduce the severity of colitis. Here, we investigate whether the inhibition of NOX2 ameliorates colitis in mice independent of AMPK activation. Our study identified that VAS2870 (a pan-Nox inhibitor) alleviated dextran sodium sulfate (DSS)-induced colitis in macrophage-specific AMPKß1-deficient (AMPKß1LysM) mice. Additionally, VAS2870 blocked LPS-induced TLR-4 and NOX2 expression, ROS production, nuclear translocation of NF-κB, and pro-inflammatory cytokine secretion in bone marrow-derived macrophages (BMDMs) from AMPKß1LysM mice, whereas sodium salicylate (SS; AMPK ß1 activator) did not. Both VAS2870 and SS inhibited LPS-induced NOX2 expression, ROS production, and pro-inflammatory cytokine secretions in bone marrow-derived macrophages (BMDMs) from wildtype (AMPKß1fl/fl) mice but only VAS2870 inhibited these effects of LPSs in AMPKß1LysM BMDMs. Furthermore, in macrophage cells (RAW 264.7), both SS and VAS2870 inhibited ROS production and the secretion of pro-inflammatory cytokines and reversed the impaired autophagy induced by LPSs. These data suggest that inhibiting NOX2 can reduce inflammation independent of AMPK in colitis.

12.
Animals (Basel) ; 13(4)2023 Feb 13.
Article in English | MEDLINE | ID: mdl-36830438

ABSTRACT

Recently, many slaughterhouses have begun to introduce automation and quality evaluation sensing equipment to the slaughter processing line to overcome insufficient human resources, improve the efficiency of the slaughter process, and standardize meat quality. Various processing instruments and sensing technologies may be used depending on the livestock to be slaughtered, but a standardized process design for a smart slaughterhouse remains to be established. Slaughterhouses are becoming more industrialized, leveraging data collection and analysis to drive growth and increase production. Therefore, slaughterhouse automation is essential for meeting production demand, and an optimized design suitable for the size of each company is required to maximize economical equipment and systems. We introduce robot technology used in the slaughterhouse and detail the visceral laparotomy, carcass preprocessing, and deboning robot technology. In this study, we examine slaughterhouse automation equipment and technologies, focusing on optimizing the processing lines, the direction of application, and the hygiene of robot technique. We hope this review will provide insight into slaughterhouse automation for decision making in the slaughter industry.

13.
Mar Drugs ; 21(2)2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36827108

ABSTRACT

Two new glycosylated and succinylated macrocyclic lactones, succinyl glyco-oxydifficidin (1) and succinyl macrolactin O (2), were isolated from a Bacillus strain collected from an intertidal mudflat on Anmyeon Island in Korea. The planar structures of 1 and 2 were proposed using mass spectrometric analysis and NMR spectroscopic data. The absolute configurations of 1 and 2 were determined by optical rotation, J-based configuration analysis, chemical derivatizations, including the modified Mosher's method, and quantum-mechanics-based calculation. Biological evaluation of 1 and 2 revealed that succinyl glyco-oxydifficidin (1) inhibited/dissociated amyloid ß (Aß) aggregation, whereas succinyl macrolactin O (2) inhibited Aß aggregation, indicating their therapeutic potential for disassembling and removing Aß aggregation.


Subject(s)
Bacillus , Bacillus/chemistry , Molecular Structure , Amyloid beta-Peptides , Lactones/pharmacology
15.
Nat Commun ; 13(1): 7617, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36539404

ABSTRACT

Chemicals in food are widely used leading to significant human exposure. Allura Red AC (AR) is a highly common synthetic colorant; however, little is known about its impact on colitis. Here, we show chronic exposure of AR at a dose found in commonly consumed dietary products exacerbates experimental models of colitis in mice. While intermittent exposure is more akin to a typical human exposure, intermittent exposure to AR in mice for 12 weeks, does not influence susceptibility to colitis. However, exposure to AR during early life primes mice to heightened susceptibility to colitis. In addition, chronic exposure to AR induces mild colitis, which is associated with elevated colonic serotonin (5-hydroxytryptamine; 5-HT) levels and impairment of the epithelial barrier function via myosin light chain kinase (MLCK). Importantly, chronic exposure to AR does not influence colitis susceptibility in mice lacking tryptophan hydroxylase 1 (TPH1), the rate limiting enzyme for 5-HT biosynthesis. Cecal transfer of the perturbed gut microbiota by AR exposure worsens colitis severity in the recipient germ-free (GF) mice. Furthermore, chronic AR exposure elevates colonic 5-HT levels in naïve GF mice. Though it remains unknown whether AR has similar effects in humans, our study reveals that chronic long-term exposure to a common synthetic colorant promotes experimental colitis via colonic 5-HT in gut microbiota-dependent and -independent pathway in mice.


Subject(s)
Colitis , Food Coloring Agents , Humans , Animals , Mice , Serotonin/metabolism , Food Coloring Agents/toxicity , Food Coloring Agents/metabolism , Colitis/chemically induced , Colitis/metabolism , Intestines , Colon/metabolism , Mice, Inbred C57BL , Intestinal Mucosa/metabolism , Dextran Sulfate
16.
Cell Metab ; 34(11): 1824-1842.e9, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36243006

ABSTRACT

During mammalian energy homeostasis, the glucagon receptor (Gcgr) plays a key role in regulating both glucose and lipid metabolisms. However, the mechanisms by which these distinct signaling arms are differentially regulated remain poorly understood. Using a Cy5-glucagon agonist, we show that the endosomal protein Vps37a uncouples glucose production from lipid usage downstream of Gcgr signaling by altering intracellular receptor localization. Hepatocyte-specific knockdown of Vps37a causes an accumulation of Gcgr in endosomes, resulting in overactivation of the cAMP/PKA/p-Creb signaling pathway to gluconeogenesis without affecting ß-oxidation. Shifting the receptor back to the plasma membrane rescues the differential signaling and highlights the importance of the spatiotemporal localization of Gcgr for its metabolic effects. Importantly, since Vps37a knockdown in animals fed with a high-fat diet leads to hyperglycemia, although its overexpression reduces blood glucose levels, these data reveal a contribution of endosomal signaling to metabolic diseases that could be exploited for treatments of type 2 diabetes.


Subject(s)
Diabetes Mellitus, Type 2 , Receptors, Glucagon , Animals , Mice , Diabetes Mellitus, Type 2/metabolism , Endosomes/metabolism , Glucagon/metabolism , Glucose/metabolism , Lipids , Liver/metabolism , Mammals/metabolism , Mice, Inbred C57BL , Receptors, Glucagon/metabolism , Endosomal Sorting Complexes Required for Transport/metabolism
17.
J Lipid Atheroscler ; 11(3): 272-279, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36212750

ABSTRACT

Objective: The endothelial inflammatory response plays an important role in atherogenesis by inducing nuclear factor (NF)κB-dependent cell adhesion molecule expression and monocyte recruitment. Here, we screened for natural ligands and investigated the ability of shinjulactone A to inhibit interleukin-1ß (IL-1ß)-induced endothelial inflammatory signaling. Methods: The natural compound library included 880 single compounds isolated from medicinal plants by the Korean Medicinal Material Bank. Primary endothelial cells were pretreated with single compounds before stimulation with IL-1ß to induce endothelial inflammation. Endothelial inflammation was measured by assaying NFκB activation and monocyte adhesion. The endothelial-mesenchymal transition (EndMT) was evaluated using cell type-specific marker protein expression and morphology. Results: Shinjulactone A was identified as an efficient blocker of IL-1ß -induced NFκB activation, with a half-maximal inhibitory concentration of approximately 1 µM, and monocyte recruitment in endothelial cells. However, it did not affect lipopolysaccharide-induced NFκB activation in macrophages. Compared to Bay 11-782, a well-known NFκB inhibitor that shows considerable cytotoxicity during long-term treatment, shinjulactone A did not affect endothelial cell viability. Furthermore, it also significantly inhibited the EndMT, which is known to promote atherosclerosis and plaque instability. Conclusion: We suggest that shinjulactone A may be an effective and safe drug candidate for atherosclerosis because it targets and inhibits both endothelial inflammation and the EndMT, without impairing NFκB-dependent innate immunity in macrophages.

18.
Biomed Res Int ; 2022: 1840541, 2022.
Article in English | MEDLINE | ID: mdl-36158893

ABSTRACT

In this study, we have examined the anticancer effects of SH005S7 on MET-amplified and (HCC827GR) NSCLC cells and their primary HCC827 cells. In vitro, first of all, cell viability and colony formation assay confirmed the growth inhibitory effects of SH005S7 on both cells. Second, SH005S7 inactivated EGFR-related multiple cell signaling, which was associated with a marked decrease in the constitutive phosphorylation of EGFR, HER3, MET, AKT, and ERK. Third, SH005S7 attenuated the anchorage-independent cell growth. Fourth, SH005S7 blocked invasive and metastatic capability by downregulation of mesenchymal markers-vimentin, snail, and MMP-9. Fifth, BrdU assay confirmed the cell cycle arrest of SH005S7 on these cells. When administered orally to nude mice xenografically transplanted human NSCLC, SH005S7 inhibited the growth of tumor and did not cause hepatotoxicity and nephrotoxicity in animals. Immunohistochemical and Western blot analyses of tissue showed that the suppression of growth correlated with inhibition of proliferation (Ki-67, PCNA), invasiveness (vimentin, snail), and angiogenesis (CD31) marker and decrement in the constitutive and phosphorylation of EGFR, HER3, MET, AKT, and ERK. Additionally, SH005S7 had immune stimulatory effects by TNF-α cytokine release on macrophage, without cell cytotoxicity. Overall, our results suggest that SH005S7 can inhibit the growth of MET-amplified and gefitinib-resistant NSCLC cells through the suppression of EGFR-related multiple targets linked to overcome gefitinib resistance.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Animals , Apoptosis , Bromodeoxyuridine/pharmacology , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Cell Proliferation , Drug Resistance, Neoplasm , ErbB Receptors/metabolism , Gefitinib/pharmacology , Humans , Ki-67 Antigen , Lung Neoplasms/pathology , Matrix Metalloproteinase 9 , Mice , Mice, Nude , Proliferating Cell Nuclear Antigen , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-akt , Proto-Oncogene Proteins c-met/metabolism , Quinazolines/pharmacology , Tumor Necrosis Factor-alpha/pharmacology , Vimentin
19.
Org Lett ; 24(39): 7188-7193, 2022 Oct 07.
Article in English | MEDLINE | ID: mdl-36165456

ABSTRACT

A genomic and spectroscopic signature-based search revealed a cycloaromatized enediyne, jejucarboside A (1), from a marine actinomycete strain. The structure of 1 was determined as a new cyclopenta[a]indene glycoside bearing carbonate functionality by nuclear magnetic resonance, high-resolution mass spectrometry (MS), MS/MS, infrared spectroscopy, and a modified Mosher's method. An iterative enediyne synthase pathway has been proposed for the putative biosynthesis of 1 by genomic analysis. Jejucarboside A exhibited cytotoxicity against the HCT116 colon carcinoma cells.


Subject(s)
Actinobacteria , Indenes , Actinobacteria/chemistry , Enediynes/chemistry , Glycosides/chemistry , Indenes/chemistry , Molecular Structure , Tandem Mass Spectrometry
20.
Mar Drugs ; 20(7)2022 Jul 12.
Article in English | MEDLINE | ID: mdl-35877748

ABSTRACT

Cinnamoyl-containing nonribosomal peptides (CCNPs) form a unique family of actinobacterial secondary metabolites and display various biological activities. A new CCNP named epoxinnamide (1) was discovered from intertidal mudflat-derived Streptomyces sp. OID44. The structure of 1 was determined by the analysis of one-dimensional (1D) and two-dimensional (2D) nuclear magnetic resonance (NMR) data along with a mass spectrum. The absolute configuration of 1 was assigned by the combination of advanced Marfey's method, 3JHH and rotating-frame overhauser effect spectroscopy (ROESY) analysis, DP4 calculation, and genomic analysis. The putative biosynthetic pathway of epoxinnamide (1) was identified through the whole-genome sequencing of Streptomyces sp. OID44. In particular, the thioesterase domain in the nonribosomal peptide synthetase (NRPS) biosynthetic gene cluster was proposed as a bifunctional enzyme, which catalyzes both epimerization and macrocyclization. Epoxinnamide (1) induced quinone reductase (QR) activity in murine Hepa-1c1c7 cells by 1.6-fold at 5 µM. It also exhibited effective antiangiogenesis activity in human umbilical vein endothelial cells (IC50 = 13.4 µM).


Subject(s)
Streptomyces , Animals , Biosynthetic Pathways , Endothelial Cells/metabolism , Humans , Mice , Multigene Family , Peptide Synthases/genetics , Peptides/metabolism , Streptomyces/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...