Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38710235

ABSTRACT

BACKGROUND: LCP1 encodes L-plastin, an actin-bundling protein primarily expressed in hematopoietic cells. In mouse and fish models, LCP1 deficiency has been shown to result in hematological and immune defects. OBJECTIVE: To determine the nature of a human inborn error of immunity resulting from a novel genetic variant of LCP1. METHODS: We performed genetic, protein and cellular analysis of PBMCs from a kindred with apparent autosomal dominant immune deficiency. We identified a candidate causal mutation in LCP1, which we evaluated by engineering the orthologous mutation in mice and Jurkat cells. RESULTS: A splice-site variant in LCP1 segregated with lymphopenia, neutropenia, and thrombocytopenia. The splicing defect results in at least two aberrant transcripts, producing an in-frame deletion of 24 nucleotides, and a frameshifting deletion of exon 8. Cellular analysis of the kindred revealed a proportionate reduction of T and B cells, and a mild expansion of transitional B cells. Similarly, mice carrying the orthologous genetic variant exhibited the same in-frame aberrant transcript, reduced expression Lcp1 and gene dose-dependent leukopenia, mild thrombocytopenia, and lymphopenia, with a significant reduction of T cell populations. Functional analysis revealed that LCP1c740-1G>A confers a defect in platelet development and function with aberrant spreading on collagen. Immunological analysis revealed defective actin organisation in T cells, reduced migration of PBMCs from patients, splenocytes from mutant mice, and a mutant Jurkat cell line in response to CXCL12, impaired germinal centre B cell expansion after immunisation, and reduced cytokinesis during T cell proliferation. CONCLUSION: We describe a unique human hematopoietic defect affecting neutrophils, lymphocytes and platelets, arising from partial LCP1 deficiency.

2.
Nat Commun ; 15(1): 2345, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38528069

ABSTRACT

Loss-of-function mutations have provided crucial insights into the immunoregulatory actions of Foxp3+ regulatory T cells (Tregs). By contrast, we know very little about the consequences of defects that amplify aspects of Treg function or differentiation. Here we show that mice heterozygous for an Ikbkb gain-of-function mutation develop psoriasis. Doubling the gene dose (IkbkbGoF/GoF) results in dactylitis, spondylitis, and characteristic nail changes, which are features of psoriatic arthritis. IkbkbGoF mice exhibit a selective expansion of Foxp3 + CD25+ Tregs of which a subset express IL-17. These modified Tregs are enriched in both inflamed tissues, blood and spleen, and their transfer is sufficient to induce disease without conventional T cells. Single-cell transcriptional and phenotyping analyses of isolated Tregs reveal expansion of non-lymphoid tissue (tissue-resident) Tregs expressing Th17-related genes, Helios, tissue-resident markers including CD103 and CD69, and a prominent NF-κB transcriptome. Thus, IKK2 regulates tissue-resident Treg differentiation, and overactivity drives dose-dependent skin and systemic inflammation.


Subject(s)
Gain of Function Mutation , I-kappa B Kinase , T-Lymphocytes, Regulatory , Animals , Mice , Forkhead Transcription Factors/genetics , I-kappa B Kinase/genetics , Inflammation/genetics
3.
Cell Mol Immunol ; 20(7): 777-793, 2023 07.
Article in English | MEDLINE | ID: mdl-37161048

ABSTRACT

As chronic antigenic stimulation from infection and autoimmunity is a feature of primary antibody deficiency (PAD), analysis of affected patients could yield insights into T-cell differentiation and explain how environmental exposures modify clinical phenotypes conferred by single-gene defects. CD57 marks dysfunctional T cells that have differentiated after antigenic stimulation. Indeed, while circulating CD57+ CD4+ T cells are normally rare, we found that they are increased in patients with PAD and markedly increased with CTLA4 haploinsufficiency or blockade. We performed single-cell RNA-seq analysis of matched CD57+ CD4+ T cells from blood and tonsil samples. Circulating CD57+ CD4+ T cells (CD4cyt) exhibited a cytotoxic transcriptome similar to that of CD8+ effector cells, could kill B cells, and inhibited B-cell responses. CTLA4 restrained the formation of CD4cyt. While CD57 also marked an abundant subset of follicular helper T cells, which is consistent with their antigen-driven differentiation, this subset had a pre-exhaustion transcriptomic signature marked by TCF7, TOX, and ID3 expression and constitutive expression of CTLA4 and did not become cytotoxic even after CTLA4 inhibition. Thus, CD57+ CD4+ T-cell cytotoxicity and exhaustion phenotypes are compartmentalised between blood and germinal centers. CTLA4 is a key modifier of CD4+ T-cell cytotoxicity, and the pathological CD4cyt phenotype is accentuated by infection.


Subject(s)
B-Lymphocytes , CD4-Positive T-Lymphocytes , B-Lymphocytes/metabolism , CD57 Antigens/metabolism , Cell Differentiation , CTLA-4 Antigen , Humans
4.
Sci Rep ; 8(1): 3529, 2018 02 23.
Article in English | MEDLINE | ID: mdl-29476109

ABSTRACT

A subset of human follicular helper T cells (TFH) cells expresses CD57 for which no distinct function has been identified. We show that CD57+ TFH cells are universally PD-1hi, but compared to their CD57- PD-1hi counterparts, express little IL-21 or IL-10 among others. Instead, CD57 expression on TFH cells marks cytotoxicity transcriptional signatures that translate into only a weak cytotoxic phenotype. Similarly, circulating PD-1+ CD57+ CD4+ T cells make less cytokine than their CD57- PD-1+ counterparts, but have a prominent cytotoxic phenotype. By analysis of responses to STAT3-dependent cytokines and cells from patients with gain- or loss-of-function STAT3 mutations, we show that CD4+ T cell cytotoxicity is STAT3-dependent. TFH formation also requires STAT3, but paradoxically, once formed, PD-1hi cells become unresponsive to STAT3. These findings suggest that changes in blood and germinal center cytotoxicity might be affected by changes in STAT3 signaling, or modulation of PD-1 by therapy.


Subject(s)
CD57 Antigens/immunology , Gene Expression Regulation/immunology , STAT3 Transcription Factor/immunology , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Helper-Inducer/immunology , Tonsillitis/immunology , CD57 Antigens/genetics , Case-Control Studies , Cell Proliferation , Cytotoxicity, Immunologic , Humans , Immunophenotyping , Interleukin-10/genetics , Interleukin-10/immunology , Interleukins/genetics , Interleukins/immunology , Palatine Tonsil/immunology , Palatine Tonsil/pathology , Palatine Tonsil/surgery , Phenotype , Primary Cell Culture , Programmed Cell Death 1 Receptor/genetics , Programmed Cell Death 1 Receptor/immunology , STAT3 Transcription Factor/genetics , Signal Transduction , T-Lymphocytes, Cytotoxic/pathology , T-Lymphocytes, Helper-Inducer/pathology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/pathology , Tonsillectomy , Tonsillitis/genetics , Tonsillitis/pathology , Tonsillitis/surgery
SELECTION OF CITATIONS
SEARCH DETAIL
...