Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
J Cell Sci ; 136(3)2023 02 01.
Article in English | MEDLINE | ID: mdl-36621522

ABSTRACT

Wnt signalling has been implicated as a driver of tumour cell metastasis, but less is known about which branches of Wnt signalling are involved and when they act in the metastatic cascade. Here, using a unique intravital imaging platform and fluorescent reporters, we visualised ß-catenin/TCF-dependent and ATF2-dependent signalling activities during human cancer cell invasion, intravasation and metastatic lesion formation in the chick embryo host. We found that cancer cells readily shifted between states of low and high canonical Wnt activity. Cancer cells that displayed low Wnt canonical activity showed higher invasion and intravasation potential in primary tumours and in metastatic lesions. In contrast, cancer cells showing low ATF2-dependent activity were significantly less invasive both at the front of primary tumours and in metastatic lesions. Simultaneous visualisation of both these reporters using a double-reporter cell line confirmed their complementary activities in primary tumours and metastatic lesions. These findings might inform the development of therapies that target different branches of Wnt signalling at specific stages of metastasis.


Subject(s)
Neoplasms , beta Catenin , Animals , Chick Embryo , Humans , beta Catenin/metabolism , Wnt Signaling Pathway , Neoplasms/genetics , Cell Line, Tumor , Activating Transcription Factor 2/genetics , Activating Transcription Factor 2/metabolism
2.
Cancers (Basel) ; 14(23)2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36497305

ABSTRACT

Dickkopf-3 (Dkk-3) is a member of the Dickkopf family protein of secreted Wingless-related integration site (Wnt) antagonists that appears to modulate regulators of the host microenvironment. In contrast to the clear anti-tumorigenic effects of Dkk-3-based gene therapies, the role of endogenous Dkk-3 in cancer is context-dependent, with elevated expression associated with tumor promotion and suppression in different settings. The receptors and effectors that mediate the diverse effects of Dkk-3 have not been characterized in detail, contributing to an ongoing mystery of its mechanism of action. This review compares the various functions of Dkk-3 in the tumor microenvironment, where Dkk-3 has been found to be expressed by subpopulations of fibroblasts, endothelial, and immune cells, in addition to epithelial cells. We also discuss how the activation or inhibition of Dkk-3, depending on tumor type and context, might be used to treat different types of cancers.

3.
Clin Sci (Lond) ; 136(19): 1405-1423, 2022 10 14.
Article in English | MEDLINE | ID: mdl-36156078

ABSTRACT

Intestinal fibrosis and stricture formation is an aggressive complication of Crohns disease (CD), linked to increased morbidity and costs. The present study investigates the contribution of Wingless-Int-1 (Wnt) signalling to intestinal fibrogenesis, considers potential cross-talk between Wnt and transforming growth factor ß1 (TGFß) signalling pathways, and assesses the therapeutic potential of small-molecule Wnt inhibitors. ß-catenin expression was explored by immunohistochemistry (IHC) in formalin-fixed paraffin embedded (FFPE) tissue from patient-matched nonstrictured (NSCD) and strictured (SCD) intestine (n=6 pairs). Functional interactions between Wnt activation, TGFß signalling, and type I collagen (Collagen-I) expression were explored in CCD-18Co cells and primary CD myofibroblast cultures established from surgical resection specimens (n=16) using small-molecule Wnt inhibitors and molecular techniques, including siRNA-mediated gene knockdown, immunofluorescence (IF), Wnt gene expression arrays, and western blotting. Fibrotic SCD tissue was marked by an increase in ß-catenin-positive cells. In vitro, activation of Wnt-ß-catenin signalling increased Collagen-I expression in CCD-18Co cells. Conversely, ICG-001, an inhibitor of ß-catenin signalling, reduced Collagen-I expression in cell lines and primary CD myofibroblasts. TGFß increased ß-catenin protein levels but did not activate canonical Wnt signalling. Rather, TGFß up-regulated WNT5B, a noncanonical Wnt ligand, and the Wnt receptor FZD8, which contributed directly to the up-regulation of Collagen-I through a ß-catenin-independent mechanism. Treatment of CCD-18Co fibroblasts and patient-derived myofibroblasts with the FZD8 inhibitor 3235-0367 reduced extracellular matrix (ECM) expression. Our data highlight small-molecule Wnt inhibitors of both canonical and noncanonical Wnt signalling, as potential antifibrotic drugs to treat SCD intestinal fibrosis. They also highlight the importance of the cross-talk between Wnt and TGFß signalling pathways in CD intestinal fibrosis.


Subject(s)
Crohn Disease , beta Catenin , Collagen Type I/metabolism , Crohn Disease/drug therapy , Crohn Disease/metabolism , Crohn Disease/pathology , Fibrosis , Formaldehyde/metabolism , Humans , Intestines , Ligands , Myofibroblasts/metabolism , RNA, Small Interfering/metabolism , Transforming Growth Factor beta1/metabolism , Wnt Signaling Pathway , beta Catenin/metabolism
4.
Mol Oncol ; 15(7): 1956-1969, 2021 07.
Article in English | MEDLINE | ID: mdl-33533127

ABSTRACT

Both oncogenic and tumor suppressor functions have been described for junction plakoglobin (JUP), also known as γ-catenin. To clarify the role of JUP in prostate cancer, JUP protein expression was immunohistochemically detected in a tissue microarray containing 11 267 individual prostatectomy specimens. Considering all patients, high JUP expression was associated with adverse tumor stage (P = 0.0002), high Gleason grade (P < 0.0001), and lymph node metastases (P = 0.011). These associations were driven mainly by the subset without TMPRSS2:ERG fusion, in which high JUP expression was an independent predictor of poor prognosis (multivariate analyses, P = 0.0054) and early biochemical recurrence (P = 0.0003). High JUP expression was further linked to strong androgen receptor expression (P < 0.0001), high cell proliferation, and PTEN and FOXP1 deletion (P < 0.0001). In the ERG-negative subset, high JUP expression was additionally linked to MAP3K7 (P = 0.0007) and CHD1 deletion (P = 0.0021). Contrasting the overall prognostic effect of JUP, low JUP expression indicated poor prognosis in the fraction of CHD1-deleted patients (P = 0.039). In this subset, the association of high JUP and high cell proliferation was specifically absent. In conclusion, the controversial biological roles of JUP are reflected by antagonistic prognostic effects in distinct prostate cancer patient subsets.


Subject(s)
Oncogene Proteins, Fusion , Prostatic Neoplasms , Biomarkers, Tumor/analysis , Biomarkers, Tumor/genetics , Forkhead Transcription Factors , Humans , Male , Oncogene Proteins, Fusion/metabolism , Prognosis , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/surgery , Repressor Proteins , Tissue Array Analysis , gamma Catenin
5.
Cancers (Basel) ; 11(7)2019 Jun 28.
Article in English | MEDLINE | ID: mdl-31261741

ABSTRACT

The expression of the secreted factor Wnt-11 is elevated in several types of cancer, including colorectal cancer, where it promotes cancer cell migration and invasion. Analysis of colorectal cancer gene expression databases associated WNT11 mRNA expression with increased likelihood of metastasis in a subset of patients. WNT11 expression was correlated with the expression of the Wnt receptors FZD6, RYK, and PTK7, and the combined expression of WNT11, FZD6 and RYK or PTK7 was associated with an increased risk of 5-year mortality rates. Immunohistochemical analysis of Wnt-11 in a cohort of 357 colorectal cancer patients found significantly higher Wnt-11 levels in tumors, compared with benign tissue. Elevated Wnt-11 levels occurred more frequently in rectal tumors than in colonic tumors and in tumors from women than men. In univariate analysis, increased Wnt-11 expression was also associated with tumor invasion and increased 5-year mortality. High Wnt-11 levels were not associated with high levels of nuclear ß-catenin, suggesting Wnt-11 is not simply an indicator for activation of ß-catenin-dependent signaling. Expression of Wnt-11 in colorectal cancer cell lines expressing low endogenous Wnt-11 inhibited ß-catenin/Tcf activity and increased ATF2-dependent transcriptional activity. WNT11 gene silencing and antibody-mediated inhibition of Wnt-11 in colorectal cancer cell lines expressing high Wnt-11 reduced their capacity for invasion. Together, these observations suggest that Wnt-11 could be a potential target for the treatment of patients with invasive colorectal cancer.

6.
J Mol Biol ; 431(12): 2298-2319, 2019 05 31.
Article in English | MEDLINE | ID: mdl-31026448

ABSTRACT

The INhibitor of Growth (ING) family of tumor suppressors regulates the transcriptional state of chromatin by recruiting remodeling complexes to sites with histone H3 trimethylated at lysine 4 (H3K4me3). This modification is recognized by the plant homeodomain (PHD) present at the C-terminus of the five ING proteins. ING5 facilitates histone H3 acetylation by the HBO1 complex, and also H4 acetylation by the MOZ/MORF complex. We show that ING5 forms homodimers through its N-terminal domain, which folds independently into an elongated coiled-coil structure. The central region of ING5, which contains the nuclear localization sequence, is flexible and disordered, but it binds dsDNA with micromolar affinity. NMR analysis of the full-length protein reveals that the two PHD fingers of the dimer are chemically equivalent and independent of the rest of the molecule, and they bind H3K4me3 in the same way as the isolated PHD. We have observed that ING5 can form heterodimers with the highly homologous ING4, and that two of three primary tumor-associated mutants in the N-terminal domain strongly destabilize the coiled-coil structure. They also affect cell proliferation and cell cycle phase distribution, suggesting a driver role in cancer progression.


Subject(s)
Histones/metabolism , Transcription Factors/metabolism , Tumor Suppressor Proteins/metabolism , Amino Acid Sequence , Histones/chemistry , Humans , Models, Molecular , Protein Domains , Protein Multimerization , Sequence Alignment , Transcription Factors/chemistry , Tumor Suppressor Proteins/chemistry
7.
Oncogene ; 38(17): 3151-3169, 2019 04.
Article in English | MEDLINE | ID: mdl-30622340

ABSTRACT

Increased cancer stem cell content during development of resistance to tamoxifen in breast cancer is driven by multiple signals, including Sox2-dependent activation of Wnt signalling. Here, we show that Sox2 increases and estrogen reduces the expression of the transcription factor Sox9. Gain and loss of function assays indicate that Sox9 is implicated in the maintenance of human breast luminal progenitor cells. CRISPR/Cas knockout of Sox9 reduces growth of tamoxifen-resistant breast tumours in vivo. Mechanistically, Sox9 acts downstream of Sox2 to control luminal progenitor cell content and is required for expression of the cancer stem cell marker ALDH1A3 and Wnt signalling activity. Sox9 is elevated in breast cancer patients after endocrine therapy failure. This new regulatory axis highlights the relevance of SOX family transcription factors as potential therapeutic targets in breast cancer.


Subject(s)
Breast Neoplasms/metabolism , Breast/metabolism , Drug Resistance, Neoplasm , Neoplastic Stem Cells/metabolism , SOX9 Transcription Factor/metabolism , SOXB1 Transcription Factors/metabolism , Breast/cytology , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Cell Line , Cell Proliferation , Epithelial Cells/cytology , Estrogens/pharmacology , Female , Gene Expression Regulation, Neoplastic , Humans , MCF-7 Cells , SOX9 Transcription Factor/genetics , Signal Transduction , Tamoxifen/pharmacology , Up-Regulation
8.
Cancers (Basel) ; 10(12)2018 12 15.
Article in English | MEDLINE | ID: mdl-30558303

ABSTRACT

Breast cancer is the most frequently diagnosed cancer in women and the second most common cancer overall, with nearly 1.7 million new cases worldwide every year. Breast cancer patients need accurate tools for early diagnosis and to improve treatment. Biomarkers are increasingly used to describe and evaluate tumours for prognosis, to facilitate and predict response to therapy and to evaluate residual tumor, post-treatment. Here, we evaluate different methods to separate Diaminobenzidine (DAB) from Hematoxylin and Eosin (H&E) staining for Wnt-1, a potential cytoplasmic breast cancer biomarker. A method comprising clustering and Color deconvolution allowed us to recognize and quantify Wnt-1 levels accurately at pixel levels. Experimental validation was conducted using a set of 12,288 blocks of m × n pixels without overlap, extracted from a Tissue Microarray (TMA) composed of 192 tissue cores. Intraclass Correlations (ICC) among evaluators of the data of 0.634 , 0.791 , 0.551 and 0.63 for each Allred class and an average ICC of 0.752 among evaluators and automatic classification were obtained. Furthermore, this method received an average rating of 4.26 out of 5 in the Wnt-1 segmentation process from the evaluators.

9.
Oncogene ; 37(39): 5305-5324, 2018 09.
Article in English | MEDLINE | ID: mdl-29858602

ABSTRACT

Aberrant transforming growth factor-ß (TGF-ß) signaling is a hallmark of the stromal microenvironment in cancer. Dickkopf-3 (Dkk-3), shown to inhibit TGF-ß signaling, is downregulated in prostate cancer and upregulated in the stroma in benign prostatic hyperplasia, but the function of stromal Dkk-3 is unclear. Here we show that DKK3 silencing in WPMY-1 prostate stromal cells increases TGF-ß signaling activity and that stromal cell-conditioned media inhibit prostate cancer cell invasion in a Dkk-3-dependent manner. DKK3 silencing increased the level of the cell-adhesion regulator TGF-ß-induced protein (TGFBI) in stromal and epithelial cell-conditioned media, and recombinant TGFBI increased prostate cancer cell invasion. Reduced expression of Dkk-3 in patient tumors was associated with increased expression of TGFBI. DKK3 silencing reduced the level of extracellular matrix protein-1 (ECM-1) in prostate stromal cell-conditioned media but increased it in epithelial cell-conditioned media, and recombinant ECM-1 inhibited TGFBI-induced prostate cancer cell invasion. Increased ECM1 and DKK3 mRNA expression in prostate tumors was associated with increased relapse-free survival. These observations are consistent with a model in which the loss of Dkk-3 in prostate cancer leads to increased secretion of TGFBI and ECM-1, which have tumor-promoting and tumor-protective roles, respectively. Determining how the balance between the opposing roles of extracellular factors influences prostate carcinogenesis will be key to developing therapies that target the tumor microenvironment.


Subject(s)
Extracellular Matrix Proteins/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Prostatic Neoplasms/pathology , Transforming Growth Factor beta1/metabolism , Tumor Microenvironment/physiology , Adaptor Proteins, Signal Transducing , Chemokines , Humans , Male , Prostatic Neoplasms/metabolism
10.
Cancers (Basel) ; 10(6)2018 May 28.
Article in English | MEDLINE | ID: mdl-29843383

ABSTRACT

The DKK3 gene encodes a secreted protein, Dkk-3, that inhibits prostate tumor growth and metastasis. DKK3 is downregulated by promoter methylation in many types of cancer, including prostate cancer. Gene silencing studies have shown that Dkk-3 maintains normal prostate epithelial cell homeostasis by limiting TGF-ß/Smad signaling. While ectopic expression of Dkk-3 leads to prostate cancer cell apoptosis, it is unclear if Dkk-3 has a physiological role in cancer cells. Here, we show that treatment of PC3 prostate cancer cells with the DNA methyltransferase (DNMT) inhibitor decitabine demethylates the DKK3 promoter, induces DKK3 expression, and inhibits TGF-ß/Smad-dependent transcriptional activity. Direct induction of DKK3 expression using CRISPR-dCas9-VPR also inhibited TGF-ß/Smad-dependent transcription and attenuated PC3 cell migration and proliferation. These effects were not observed in C4-2B cells, which do not respond to TGF-ß. TGF-ß signals can regulate gene expression directly via SMAD proteins and indirectly by increasing DNMT expression, leading to promoter methylation. Analysis of genes downregulated by promoter methylation and predicted to be regulated by TGF-ß found that DKK3 induction increased expression of PTGS2, which encodes cyclooxygenase-2. Together, these observations provide support for using CRISPR-mediated induction of DKK3 as a potential therapeutic approach for prostate cancer and highlight complexities in Dkk-3 regulation of TGF-ß signaling.

11.
Nat Commun ; 9(1): 1747, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29717114

ABSTRACT

Wnt-11 promotes cancer cell migration and invasion independently of ß-catenin but the receptors involved remain unknown. Here, we provide evidence that FZD8 is a major Wnt-11 receptor in prostate cancer that integrates Wnt-11 and TGF-ß signals to promote EMT. FZD8 mRNA is upregulated in multiple prostate cancer datasets and in metastatic cancer cell lines in vitro and in vivo. Analysis of patient samples reveals increased levels of FZD8 in cancer, correlating with Wnt-11. FZD8 co-localizes and co-immunoprecipitates with Wnt-11 and potentiates Wnt-11 activation of ATF2-dependent transcription. FZD8 silencing reduces prostate cancer cell migration, invasion, three-dimensional (3D) organotypic cell growth, expression of EMT-related genes, and TGF-ß/Smad-dependent signaling. Mechanistically, FZD8 forms a TGF-ß-regulated complex with TGF-ß receptors that is mediated by the extracellular domains of FZD8 and TGFBR1. Targeting FZD8 may therefore inhibit aberrant activation of both Wnt and TGF-ß signals in prostate cancer.


Subject(s)
Prostatic Neoplasms/metabolism , Receptors, Cell Surface/metabolism , Signal Transduction , Transforming Growth Factor beta/metabolism , Wnt Proteins/metabolism , Activating Transcription Factor 2/metabolism , Cell Line, Tumor , Epithelial-Mesenchymal Transition , Gene Silencing , Humans , Male , Neoplasm Invasiveness , Neoplasm Metastasis , Prostatic Neoplasms/pathology , Receptors, Cell Surface/genetics , Receptors, Transforming Growth Factor beta/metabolism , Smad Proteins/metabolism
12.
Int J Mol Sci ; 20(1)2018 12 29.
Article in English | MEDLINE | ID: mdl-30597994

ABSTRACT

A balanced chromosomal translocation disrupting DISC1 (Disrupted in Schizophrenia 1) gene has been linked to psychiatric diseases, such as major depression, bipolar disorder and schizophrenia. Since the discovery of this translocation, many studies have focused on understating the role of the truncated isoform of DISC1, hypothesizing that the gain of function of this protein could be behind the neurobiology of mental conditions, but not so many studies have focused in the mechanisms impaired due to its loss of function. For that reason, we performed an analysis on the cellular proteome of primary neurons in which DISC1 was knocked down with the goal of identifying relevant pathways directly affected by DISC1 loss of function. Using an unbiased proteomic approach, we found that the expression of 31 proteins related to neurodevelopment (e.g., CRMP-2, stathmin) and synaptic function (e.g., MUNC-18, NCS-1) is altered by DISC1 in primary mouse neurons. Hence, this study reinforces the idea that DISC1 is a unifying regulator of both neurodevelopment and synaptic function, thereby providing a link between these two key anatomical and cellular circuitries.


Subject(s)
Nerve Tissue Proteins/genetics , Neurogenesis , Synaptic Transmission , Animals , Cell Line, Tumor , Cells, Cultured , Humans , Mice , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Proteome/genetics , Proteome/metabolism
13.
Nat Rev Urol ; 14(11): 683-696, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28895566

ABSTRACT

Genome sequencing and gene expression analyses of prostate tumours have highlighted the potential importance of genetic and epigenetic changes observed in WNT signalling pathway components in prostate tumours - particularly in the development of castration-resistant prostate cancer. WNT signalling is also important in the prostate tumour microenvironment, in which WNT proteins secreted by the tumour stroma promote resistance to therapy, and in prostate cancer stem or progenitor cells, in which WNT-ß-catenin signals promote self-renewal or expansion. Preclinical studies have demonstrated the potential of inhibitors that target WNT receptor complexes at the cell membrane or that block the interaction of ß-catenin with lymphoid enhancer-binding factor 1 and the androgen receptor, in preventing prostate cancer progression. Some WNT signalling inhibitors are in phase I trials, but they have yet to be tested in patients with prostate cancer.


Subject(s)
Prostatic Neoplasms/therapy , Wnt Signaling Pathway/drug effects , Humans , Male , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Tumor Microenvironment/drug effects
14.
Mol Neurobiol ; 54(8): 6213-6224, 2017 10.
Article in English | MEDLINE | ID: mdl-27709494

ABSTRACT

Wnt proteins preferentially activate either ß-catenin-dependent or ß-catenin-independent signals, but the activity of a particular Wnt also depends on cellular context and receptor availability. We previously reported that Wnt-3a induces neural differentiation of human embryonic stem cell-derived neural stem cells (NSCs) in a ß-catenin-independent manner by activating a signal involving JNK and the AP-1 family member ATF-2. Here, we report the results of a gene silencing approach to identify the Wnt receptors that mediate this response to Wnt-3a. Silencing of ROR2 increased neuronal differentiation, as measured by expression of the genes DCX, NEUROD1, and NGN1, suggesting ROR2 signals normally prevent differentiation. Silencing of the other Wnt receptors singly did not affect Wnt-3a-induced neuronal differentiation. However, pairwise silencing of ROR1 and FZD4 or FZD5 and of LRP6 and FZD4 or FZD5 inhibited neuronal differentiation, as detected by reductions in the expression of neuronal genes and immunocytochemical detection of DCX, NEUROD1 and DCX. Ectopic expression of these receptors in HEK 293 cells increased ATF2-dependent transcription. In addition, ROR1 coimmunoprecipitated with FZD4 and LRP6 in transfected HEK 293 cells and colocalized with FZD4 and with LRP6 at the cell surface of transfected L cells. Wnt-3a did not appear to affect these interactions but did alter the interactions between LRP6 and FZD4/5. Together, these observations highlight roles for ROR1, LRP6, FZD4, and FZD5 in neural stem cell differentiation and provide support for a model in which dynamic interactions among these receptors mediate Wnt-3a activation of ATF2 signaling.


Subject(s)
Neural Stem Cells/metabolism , Neurogenesis/physiology , Neurons/metabolism , Receptors, Wnt/metabolism , Wnt3A Protein/pharmacology , Humans , Neural Stem Cells/cytology , Neural Stem Cells/drug effects , Neurogenesis/drug effects , Neurons/cytology , Neurons/drug effects , Signal Transduction/drug effects , Signal Transduction/physiology
16.
Carcinogenesis ; 37(1): 18-29, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26503968

ABSTRACT

Dickkopf-3 (Dkk-3) is a secreted protein whose expression is downregulated in many types of cancer. Endogenous Dkk-3 is required for formation of acini in 3D cultures of prostate epithelial cells, where it inhibits transforming growth factor (TGF)-ß/Smad signaling. Here, we examined the effects of Dkk-3 on the expression and activity of matrix metalloproteases (MMPs), which mediate the effects of TGF-ß on extracellular matrix disassembly during tissue morphogenesis and promote invasion of tumor cells. Silencing of Dkk-3 in prostate epithelial cells resulted in increased expression and enzyme activity of MMP-2 and MMP-9. Inhibition of MMP-9 partially restored normal acinar morphogenesis in Dkk-3-silenced RWPE-1 prostate epithelial cells. In PC3 prostate cancer cells, Dkk-3 inhibited TGF-ß-dependent migration and invasion. Inhibition was mediated by the Dkk-3 C-terminal cysteine-rich domain (Cys2), which also inhibited TGF-ß-induced expression of MMP9 and MMP13. In contrast, Dkk-3, but not Cys2, increased formation of normal acini in Dkk-3-silenced prostate epithelial cells. These observations highlight a role for Dkk-3 in modulating TGF-ß/MMP signals in the prostate, and suggest that the Dkk-3 Cys2 domain can be used as a basis for therapies that target the tumor promoting effects of TGF-ß signaling in advanced prostate cancer.


Subject(s)
Intercellular Signaling Peptides and Proteins/metabolism , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Transforming Growth Factor beta/metabolism , Acinar Cells/metabolism , Acinar Cells/pathology , Adaptor Proteins, Signal Transducing , Cell Line, Tumor , Chemokines , Enzyme Activation , Epithelial Cells/metabolism , Epithelial Cells/pathology , Gene Silencing , Humans , Intercellular Signaling Peptides and Proteins/genetics , Male , Matrix Metalloproteinase 2/biosynthesis , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 9/biosynthesis , Matrix Metalloproteinase 9/genetics , Morphogenesis , Neoplasm Invasiveness , Prostatic Neoplasms/enzymology , Prostatic Neoplasms/genetics , Protein Structure, Tertiary , Signal Transduction
17.
Cell Mol Life Sci ; 72(21): 4157-72, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26306936

ABSTRACT

The first mammalian Wnt to be discovered, Wnt-1, was found to be essential for the development of a large part of the mouse brain over 25 years ago. We have since learned that Wnt family secreted glycolipoproteins, of which there are nineteen, which activate a diverse network of signals that are particularly important during embryonic development and tissue regeneration. Wnt signals in the developing and adult brain can drive neural stem cell self-renewal, expansion, asymmetric cell division, maturation and differentiation. The molecular events taking place after a Wnt binds to its cell-surface receptors are complex and, at times, controversial. A deeper understanding of these events is anticipated to lead to improvements in the treatment of neurodegenerative diseases and stem cell-based replacement therapies. Here, we review the roles played by Wnts in neural stem cells in the developing mouse brain, at neurogenic sites of the adult mouse and in neural stem cell culture models.


Subject(s)
Brain/metabolism , Neural Stem Cells/metabolism , Wnt Signaling Pathway , Animals , Brain/cytology , Brain/growth & development , Cell Differentiation/physiology , Humans , Mice , Neural Stem Cells/cytology , Neural Stem Cells/physiology , Neurogenesis/physiology , Stem Cells/cytology , Stem Cells/physiology , Wnt Proteins/genetics , Wnt Proteins/metabolism
18.
Oncotarget ; 5(18): 8173-87, 2014 Sep 30.
Article in English | MEDLINE | ID: mdl-25327559

ABSTRACT

Expression of Glycogen Synthase Kinase-3 (GSK-3) is elevated in prostate cancer and its inhibition reduces prostate cancer cell proliferation, in part by reducing androgen receptor (AR) signaling. However, GSK-3 inhibition can also activate signals that promote cell proliferation and survival, which may preclude the use of GSK-3 inhibitors in the clinic. To identify such signals in prostate cancer, we screened for changes in transcription factor target DNA binding activity in GSK-3-silenced cells. Among the alterations was a reduction in AR DNA target binding, as predicted from previous studies, and an increase in NFκB DNA target binding. Consistent with the latter, gene silencing of GSK-3 or inhibition using the GSK-3 inhibitor CHIR99021 increased basal NFκB transcriptional activity. Activation of NFκB was accompanied by an increase in the level of the NFκB family member RelB. Conversely, silencing RelB reduced activation of NFκB by CHIR99021. Furthermore, the reduction of prostate cancer cell proliferation by CHIR99021 was potentiated by inhibition of NFκB signaling using the IKK inhibitor PS1145. Finally, stratification of human prostate tumor gene expression data for GSK3 revealed an inverse correlation between NFκB-dependent and androgen-dependent gene expression, consistent with the results from the transcription factor target DNA binding screen. In addition, there was a correlation between expression of androgen-repressed NFκB target genes and reduced survival of patients with metastatic prostate cancer. These findings highlight an association between GSK-3/AR and NFκB signaling and its potential clinical importance in metastatic prostate cancer.


Subject(s)
Gene Regulatory Networks , Glycogen Synthase Kinase 3/metabolism , NF-kappa B/metabolism , Prostatic Neoplasms/enzymology , Receptors, Androgen/metabolism , Signal Transduction , Transcription, Genetic , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Proliferation , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks/drug effects , Glycogen Synthase Kinase 3/antagonists & inhibitors , Glycogen Synthase Kinase 3/genetics , Glycogen Synthase Kinase 3 beta , Humans , Male , Molecular Targeted Therapy , NF-kappa B/antagonists & inhibitors , NF-kappa B/genetics , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Protein Kinase Inhibitors/pharmacology , RNA Interference , Receptors, Androgen/genetics , Signal Transduction/drug effects , Transcription, Genetic/drug effects , Transfection
19.
Stem Cells ; 32(12): 3196-208, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25100239

ABSTRACT

Wnt/ß-catenin signaling is essential for neurogenesis but less is known about ß-catenin-independent Wnt signals. We show here that Wnt/activator protein-1 (AP-1) signaling drives differentiation of human embryonic stem cell and induced pluripotent stem cell-derived neural progenitor cells. Neuronal differentiation was accompanied by a reduction in ß-catenin/Tcf-dependent transcription and target gene expression, increased levels and/or phosphorylation of activating transcription factor 2 (ATF2), cyclic AMP response element-binding protein, and c-Jun, and increased AP-1-dependent transcription. Inhibition of Wnt secretion using the porcupine inhibitors IWP-2 and Wnt-C59 blocked neuronal differentiation, while activation or inhibition of Wnt/ß-catenin signaling had no effect. Neuronal differentiation increased expression of several Wnt genes, including WNT3A, silencing of which reduced differentiation. Addition of recombinant Wnt-3a to cells treated with IWP-2 or Wnt-C59 increased AP-1 levels and restored neuronal differentiation. The effects of Wnt-3a could not be blocked by addition of Dkk-1 or IWR-1, suggesting the involvement of noncanonical signaling. Consistent with this, restoration of neuronal differentiation by Wnt-3a was reduced by inhibition of Jun N-terminal kinase (JNK) and by gene silencing of ATF2. Together, these observations suggest that ß-catenin-independent Wnt signals promote neural stem/progenitor cell differentiation in a signaling pathway involving Wnt-3a, JNK, and ATF2.


Subject(s)
Cell Differentiation/physiology , Neural Stem Cells/cytology , Neurogenesis/physiology , Neurons/cytology , Wnt Signaling Pathway/physiology , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Neural Stem Cells/metabolism , Signal Transduction/physiology , Transcription Factor AP-1/metabolism , Wnt Proteins/metabolism , beta Catenin/metabolism
20.
Dev Neurobiol ; 74(12): 1243-54, 2014 Dec.
Article in English | MEDLINE | ID: mdl-24909558

ABSTRACT

Dickkopf-3 (Dkk-3) and Dkkl-1 (Soggy) are secreted proteins of poorly understood function that are highly expressed in subsets of neurons in the brain. To explore their potential roles during neuronal development, we examined their expression in Ntera-2 (NT2) human embryonal carcinoma cells, which differentiate into neurons upon treatment with retinoic acid (RA). RA treatment increased the mRNA and protein levels of Dkk-3 but not of Dkkl-1. Ectopic expression of both Dkk-3 and Dkkl-1 induced apoptosis in NT2 cells. Gene silencing of Dkk-3 did not affect NT2 cell growth or differentiation but altered their response to RA in suspension cultures. RA treatment of NT2 cells cultured in suspension resulted in morphological changes that led to cell attachment and flattening out of cell aggregates. Although there were no significant differences in the expression levels of cell adhesion molecules in control and Dkk-3-silenced cells, this morphological response was not observed in Dkk-3-silenced cells. These findings suggest that Dkk-3 plays a role in the regulation of cell interactions during RA-induced neuronal differentiation.


Subject(s)
Embryonal Carcinoma Stem Cells/physiology , Intercellular Signaling Peptides and Proteins/metabolism , Mitosis Modulators/pharmacology , Neurogenesis/physiology , Tretinoin/pharmacology , Adaptor Proteins, Signal Transducing , Apoptosis/physiology , Blotting, Western , Caspase 3/metabolism , Caspase 7/metabolism , Cell Adhesion/drug effects , Cell Adhesion/physiology , Cell Line, Tumor , Chemokines , Embryonal Carcinoma Stem Cells/cytology , Embryonal Carcinoma Stem Cells/drug effects , Gene Silencing , Humans , Intercellular Signaling Peptides and Proteins/genetics , Neurogenesis/drug effects , Neurons/cytology , Neurons/drug effects , Neurons/physiology , Polymerase Chain Reaction , RNA, Messenger/metabolism , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...