Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 4915, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38851747

ABSTRACT

The bioavailability of nicotinamide adenine dinucleotide (NAD) is vital for skeletal muscle health, yet the mechanisms or signals regulating NAD homeostasis remain unclear. Here, we uncover a pathway connecting peripheral glucose sensing to the modulation of muscle NAD through TAS1R2, the sugar-sensing G protein-coupled receptor (GPCR) initially identified in taste perception. Muscle TAS1R2 receptor stimulation by glucose and other agonists induces ERK1/2-dependent phosphorylation and activation of poly(ADP-ribose) polymerase1 (PARP1), a major NAD consumer in skeletal muscle. Consequently, muscle-specific deletion of TAS1R2 (mKO) in male mice suppresses PARP1 activity, elevating NAD levels and enhancing mitochondrial capacity and running endurance. Plasma glucose levels negatively correlate with muscle NAD, and TAS1R2 receptor deficiency enhances NAD responses across the glycemic range, implicating TAS1R2 as a peripheral energy surveyor. These findings underscore the role of GPCR signaling in NAD regulation and propose TAS1R2 as a potential therapeutic target for maintaining muscle health.


Subject(s)
Glucose , Homeostasis , Muscle, Skeletal , NAD , Receptors, G-Protein-Coupled , Animals , Muscle, Skeletal/metabolism , NAD/metabolism , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Male , Glucose/metabolism , Mice , Mice, Knockout , Humans , Mitochondria/metabolism , Mice, Inbred C57BL , Signal Transduction , Phosphorylation
SELECTION OF CITATIONS
SEARCH DETAIL