Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Chembiochem ; 22(18): 2814-2820, 2021 09 14.
Article in English | MEDLINE | ID: mdl-34289225

ABSTRACT

Thiamine diphosphate-dependent enzymes, and specifically transketolases, form one of the most important families of biocatalytic tools for enantioselective carbon-carbon bond formation yielding various hydroxyketones of biological interest. To enable substrate profiling of transketolases for acceptance of different donors and acceptors, a simple, direct colorimetric assay based on pH reaction variation was developed to establish a high-throughput solid-phase assay. This assay reduces the screening effort in the directed evolution of transketolases, as only active variants are selected for further analysis. Transketolase activity is detected as bicarbonate anions released from the α-ketoacid donor substrate, which causes the pH to rise. A pH indicator, bromothymol blue, which changes color from yellow to blue in alkaline conditions, was used to directly detect, with the naked eye, clones expressing active transketolase variants, obviating enzyme extraction.


Subject(s)
High-Throughput Screening Assays/methods , Transketolase/metabolism , Bacterial Proteins/metabolism , Biocatalysis , Colorimetry , Directed Molecular Evolution , Geobacillus/enzymology , Hydrogen-Ion Concentration , Pyruvates/metabolism , Stereoisomerism , Substrate Specificity
2.
Int J Biol Macromol ; 132: 1140-1146, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-30978419

ABSTRACT

The discovery of molecules that can inhibit the action of phytopathogens is essential to find alternative to current pesticides. Pectin methylesterases (PME), enzymes that fine-tune the degree of methylesterification of plant cell wall pectins, play a key role in the pathogenicity of fungi or bacteria. Here we report the synthesis of new lactoside derivatives and their analysis as potential PME inhibitors using three plants and one fungal PME. Because of its structure, abundance and reduced cost, lactose was chosen as a case study. Lactoside derivatives were obtained by TEMPO-mediated oxidation of methyl lactoside, followed by an esterification procedure. Three derivatives were synthesized: sodium (methyl-lactosid)uronate, methyl (methyl-lactosid)uronate and butyl (methyl-lactosid)uronate. The inhibition of the plant and pathogen enzyme activities by lactoside derivatives was measured in vitro, showing the importance of the substitution on lactose: methyl (methyl-lactosid)uronate was more efficient than butyl (methyl-lactosid)uronate. These results were confirmed by docking analysis showing the difference in the interaction between lactoside derivatives and PME proteins. In conclusion, this study identified novel inhibitors of pectin remodeling enzymes.


Subject(s)
Carboxylic Ester Hydrolases/antagonists & inhibitors , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Lactose/chemistry , Lactose/pharmacology , Citrus sinensis/enzymology , Enzyme Inhibitors/chemical synthesis , Lactose/chemical synthesis
3.
Int J Biol Macromol ; 81: 681-91, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26342461

ABSTRACT

Pectin methylesterases (PMEs) play a central role in pectin remodeling during plant development. They are also present in phytopathogens such as bacteria and fungi. We investigated the substrate specificity and pH dependence of plant and fungi PMEs using tailor-made pectic substrates. For this purpose, we used two plant PMEs (from orange peel: Citrus sinensis and from Arabidopsis thaliana) and one fungal PME (from Botrytis cinerea). We showed that plant and fungi PMEs differed in their substrate specificity and pH dependence, and that there were some differences between plant PMEs. We further investigated the inhibition of these enzyme activities using characterized polyphenols such as catechins and tannic acid. We showed that PMEs differed in their sensitivity to chemical compounds. In particular, fungal PME was not sensitive to inhibition. Finally, we screened for novel chemical inhibitors of PMEs using a chemical library of ∼3600 compounds. We identified a hundred new inhibitors of plant PMEs, but none had an effect on the fungal enzyme. This study sheds new light on the specificity of pectin methylesterases and provides new tools to modulate their activity.


Subject(s)
Carboxylic Ester Hydrolases/chemistry , Fungi/enzymology , Plants/enzymology , Amino Acid Sequence , Carboxylic Ester Hydrolases/antagonists & inhibitors , Carboxylic Ester Hydrolases/isolation & purification , Carboxylic Ester Hydrolases/metabolism , Drug Discovery , Drug Evaluation, Preclinical , Enzyme Activation/drug effects , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Hydrogen-Ion Concentration , Molecular Sequence Data , Polyphenols/pharmacology , Sequence Alignment , Small Molecule Libraries , Substrate Specificity
4.
J Biol Chem ; 290(38): 23320-35, 2015 Sep 18.
Article in English | MEDLINE | ID: mdl-26183897

ABSTRACT

Pectin methylesterases (PMEs) catalyze the demethylesterification of homogalacturonan domains of pectin in plant cell walls and are regulated by endogenous pectin methylesterase inhibitors (PMEIs). In Arabidopsis dark-grown hypocotyls, one PME (AtPME3) and one PMEI (AtPMEI7) were identified as potential interacting proteins. Using RT-quantitative PCR analysis and gene promoter::GUS fusions, we first showed that AtPME3 and AtPMEI7 genes had overlapping patterns of expression in etiolated hypocotyls. The two proteins were identified in hypocotyl cell wall extracts by proteomics. To investigate the potential interaction between AtPME3 and AtPMEI7, both proteins were expressed in a heterologous system and purified by affinity chromatography. The activity of recombinant AtPME3 was characterized on homogalacturonans (HGs) with distinct degrees/patterns of methylesterification. AtPME3 showed the highest activity at pH 7.5 on HG substrates with a degree of methylesterification between 60 and 80% and a random distribution of methyl esters. On the best HG substrate, AtPME3 generates long non-methylesterified stretches and leaves short highly methylesterified zones, indicating that it acts as a processive enzyme. The recombinant AtPMEI7 and AtPME3 interaction reduces the level of demethylesterification of the HG substrate but does not inhibit the processivity of the enzyme. These data suggest that the AtPME3·AtPMEI7 complex is not covalently linked and could, depending on the pH, be alternately formed and dissociated. Docking analysis indicated that the inhibition of AtPME3 could occur via the interaction of AtPMEI7 with a PME ligand-binding cleft structure. All of these data indicate that AtPME3 and AtPMEI7 could be partners involved in the fine tuning of HG methylesterification during plant development.


Subject(s)
Arabidopsis Proteins/chemistry , Arabidopsis/chemistry , Carboxylic Ester Hydrolases/chemistry , Enzyme Inhibitors/chemistry , Hypocotyl/chemistry , Multiprotein Complexes/chemistry , Pectins/chemistry , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Binding Sites , Carboxylic Ester Hydrolases/genetics , Carboxylic Ester Hydrolases/metabolism , Enzyme Inhibitors/metabolism , Hydrogen-Ion Concentration , Hypocotyl/genetics , Hypocotyl/metabolism , Molecular Docking Simulation , Multiprotein Complexes/genetics , Multiprotein Complexes/metabolism , Pectins/genetics , Pectins/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...