Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(2)2023 Jan 14.
Article in English | MEDLINE | ID: mdl-36679755

ABSTRACT

(1) Background and Goal: Several studies have investigated the association of sleep, diurnal patterns, and circadian rhythms with the presence and with the risk states of mental illnesses such as schizophrenia and bipolar disorder. The goal of our study was to examine actigraphic measures to identify features that can be extracted from them so that a machine learning model can detect premorbid latent liabilities for schizotypy and bipolarity. (2) Methods: Our team developed a small wrist-worn measurement device that collects and identifies actigraphic data based on an accelerometer. The sensors were used by carefully selected healthy participants who were divided into three groups: Control Group (C), Cyclothymia Factor Group (CFG), and Positive Schizotypy Factor Group (PSF). From the data they collected, our team performed data cleaning operations and then used the extracted metrics to generate the feature combinations deemed most effective, along with three machine learning algorithms for categorization. (3) Results: By conducting the training, we were able to identify a set of mildly correlated traits and their order of importance based on the Shapley value that had the greatest impact on the detection of bipolarity and schizotypy according to the logistic regression, Light Gradient Boost, and Random Forest algorithms. (4) Conclusions: These results were successfully compared to the results of other researchers; we had a similar differentiation in features used by others, and successfully developed new ones that might be a good complement for further research. In the future, identifying these traits may help us identify people at risk from mental disorders early in a cost-effective, automated way.


Subject(s)
Bipolar Disorder , Schizophrenia , Humans , Bipolar Disorder/diagnosis , Actigraphy/methods , Schizophrenia/diagnosis , Sleep , Circadian Rhythm
2.
Sci Rep ; 7(1): 16759, 2017 12 01.
Article in English | MEDLINE | ID: mdl-29196666

ABSTRACT

There are two basic stages of fine motor learning: performance gain might occur during practice (online learning), and improvement might take place without any further practice (offline learning). Offline learning, also called consolidation, has a sleep-dependent stage in terms of both speed and accuracy of the learned movement. Sleep spindle or sigma band characteristics affect motor learning in typically developing individuals. Here we ask whether the earlier found, altered sigma activity in a neurodevelopmental disorder (Williams syndrome, WS) predicts motor learning. TD and WS participants practiced in a sequential finger tapping (FT) task for two days. Although WS participants started out at a lower performance level, TD and WS participants had a comparable amount of online and offline learning in terms of the accuracy of movement. Spectral analysis of WS sleep EEG recordings revealed that motor accuracy improvement is intricately related to WS-specific NREM sleep EEG features in the 8-16 Hz range profiles: higher 11-13.5 Hz z-transformed power is associated with higher offline FT accuracy improvement; and higher oscillatory peak frequencies are associated with lower offline accuracy improvements. These findings indicate a fundamental relationship between sleep spindle (or sigma band) activity and motor learning in WS.


Subject(s)
Brain Waves , Motor Skills , Williams Syndrome/physiopathology , Adolescent , Adult , Child , Electroencephalography , Female , Humans , Learning , Male , Psychomotor Performance , Reproducibility of Results , Sleep , Sleep Stages , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...