Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
Molecules ; 28(8)2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37110655

ABSTRACT

Molecular docking is a key method used in virtual screening (VS) campaigns to identify small-molecule ligands for drug discovery targets. While docking provides a tangible way to understand and predict the protein-ligand complex formation, the docking algorithms are often unable to separate active ligands from inactive molecules in practical VS usage. Here, a novel docking and shape-focused pharmacophore VS protocol is demonstrated for facilitating effective hit discovery using retinoic acid receptor-related orphan receptor gamma t (RORγt) as a case study. RORγt is a prospective target for treating inflammatory diseases such as psoriasis and multiple sclerosis. First, a commercial molecular database was flexibly docked. Second, the alternative docking poses were rescored against the shape/electrostatic potential of negative image-based (NIB) models that mirror the target's binding cavity. The compositions of the NIB models were optimized via iterative trimming and benchmarking using a greedy search-driven algorithm or brute force NIB optimization. Third, a pharmacophore point-based filtering was performed to focus the hit identification on the known RORγt activity hotspots. Fourth, free energy binding affinity evaluation was performed on the remaining molecules. Finally, twenty-eight compounds were selected for in vitro testing and eight compounds were determined to be low µM range RORγt inhibitors, thereby showing that the introduced VS protocol generated an effective hit rate of ~29%.


Subject(s)
Drug Discovery , Nuclear Receptor Subfamily 1, Group F, Member 3 , Molecular Docking Simulation , Transcription Factors , Receptors, Retinoic Acid , Tretinoin , Ligands
2.
J Chem Inf Model ; 62(1): 9-15, 2022 01 10.
Article in English | MEDLINE | ID: mdl-34932340

ABSTRACT

Projects in chemo- and bioinformatics often consist of scattered data in various types and are difficult to access in a meaningful way for efficient data analysis. Data is usually too diverse to be even manipulated effectively. Sdfconf is data manipulation and analysis software to address this problem in a logical and robust manner. Other software commonly used for such tasks are either not designed with molecular and/or conformational data in mind or provide only a narrow set of tasks to be accomplished. Furthermore, many tools are only available within commercial software packages. Sdfconf is a flexible, robust, and free-of-charge tool for linking data from various sources for meaningful and efficient manipulation and analysis of molecule data sets. Sdfconf packages molecular structures and metadata into a complete ensemble, from which one can access both the whole data set and individual molecules and/or conformations. In this software note, we offer some practical examples of the utilization of sdfconf.


Subject(s)
Computational Biology , Data Management , Data Analysis , Software
3.
J Chem Inf Model ; 59(8): 3584-3599, 2019 08 26.
Article in English | MEDLINE | ID: mdl-31290660

ABSTRACT

The failure of default scoring functions to ensure virtual screening enrichment is a persistent problem for the molecular docking algorithms used in structure-based drug discovery. To remedy this problem, elaborate rescoring and postprocessing schemes have been developed with a varying degree of success, specificity, and cost. The negative image-based rescoring (R-NiB) has been shown to improve the flexible docking performance markedly with a variety of drug targets. The yield improvement is achieved by comparing the alternative docking poses against the negative image of the target protein's ligand-binding cavity. In other words, the shape and electrostatics of the binding pocket is directly used in the similarity comparison to rank the explicit docking poses. Here, the PANTHER/ShaEP-based R-NiB methodology is tested with six popular docking softwares, including GLIDE, PLANTS, GOLD, DOCK, AUTODOCK, and AUTODOCK VINA, using five validated benchmark sets. Overall, the results indicate that R-NiB outperforms the default docking scoring consistently and inexpensively, demonstrating that the methodology is ready for wide-scale virtual screening usage.


Subject(s)
Molecular Docking Simulation , Benchmarking , Crystallography, X-Ray , Drug Evaluation, Preclinical , Protein Conformation , User-Computer Interface
4.
ACS Omega ; 3(6): 6259-6266, 2018 Jun 30.
Article in English | MEDLINE | ID: mdl-30023945

ABSTRACT

Retinoic acid-related orphan receptor γt (RORγt) has a vital role in the differentiation of T-helper 17 (TH17) cells. Potent and specific RORγt inverse agonists are sought for treating TH17-related diseases such as psoriasis, rheumatoid arthritis, and type 1 diabetes. Here, the aim was to discover novel RORγt ligands using both standard molecular docking and negative image-based screening. Interestingly, both of these in silico techniques put forward mostly the same compounds for experimental testing. In total, 11 of the 34 molecules purchased for testing were verified as RORγt inverse agonists, thus making the effective hit rate 32%. The pIC50 values for the compounds varied from 4.9 (11 µM) to 6.2 (590 nM). Importantly, the fact that the verified hits represent four different cores highlights the structural diversity of the RORγt inverse agonism and the ability of the applied screening methodologies to facilitate much-desired scaffold hopping for drug design.

5.
J Enzyme Inhib Med Chem ; 33(1): 743-754, 2018 Dec.
Article in English | MEDLINE | ID: mdl-29620427

ABSTRACT

A comprehensive set of 3-phenylcoumarin analogues with polar substituents was synthesised for blocking oestradiol synthesis by 17-ß-hydroxysteroid dehydrogenase 1 (HSD1) in the latter part of the sulphatase pathway. Five analogues produced ≥62% HSD1 inhibition at 5 µM and, furthermore, three of them produced ≥68% inhibition at 1 µM. A docking-based structure-activity relationship analysis was done to determine the molecular basis of the inhibition and the cross-reactivity of the analogues was tested against oestrogen receptor, aromatase, cytochrome P450 1A2, and monoamine oxidases. Most of the analogues are only modestly active with 17-ß-hydroxysteroid dehydrogenase 2 - a requirement for lowering effective oestradiol levels in vivo. Moreover, the analysis led to the synthesis and discovery of 3-imidazolecoumarin as a potent aromatase inhibitor. In short, coumarin core can be tailored with specific ring and polar moiety substitutions to block either the sulphatase pathway or the aromatase pathway for treating breast cancer and endometriosis.


Subject(s)
17-Hydroxysteroid Dehydrogenases/antagonists & inhibitors , Coumarins/pharmacology , Enzyme Inhibitors/pharmacology , Estradiol/biosynthesis , 17-Hydroxysteroid Dehydrogenases/metabolism , Computer-Aided Design , Coumarins/chemical synthesis , Coumarins/chemistry , Dose-Response Relationship, Drug , Drug Discovery , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Ligands , Molecular Docking Simulation , Molecular Structure , Structure-Activity Relationship
6.
Front Pharmacol ; 9: 260, 2018.
Article in English | MEDLINE | ID: mdl-29632488

ABSTRACT

Despite the large computational costs of molecular docking, the default scoring functions are often unable to recognize the active hits from the inactive molecules in large-scale virtual screening experiments. Thus, even though a correct binding pose might be sampled during the docking, the active compound or its biologically relevant pose is not necessarily given high enough score to arouse the attention. Various rescoring and post-processing approaches have emerged for improving the docking performance. Here, it is shown that the very early enrichment (number of actives scored higher than 1% of the highest ranked decoys) can be improved on average 2.5-fold or even 8.7-fold by comparing the docking-based ligand conformers directly against the target protein's cavity shape and electrostatics. The similarity comparison of the conformers is performed without geometry optimization against the negative image of the target protein's ligand-binding cavity using the negative image-based (NIB) screening protocol. The viability of the NIB rescoring or the R-NiB, pioneered in this study, was tested with 11 target proteins using benchmark libraries. By focusing on the shape/electrostatics complementarity of the ligand-receptor association, the R-NiB is able to improve the early enrichment of docking essentially without adding to the computing cost. By implementing consensus scoring, in which the R-NiB and the original docking scoring are weighted for optimal outcome, the early enrichment is improved to a level that facilitates effective drug discovery. Moreover, the use of equal weight from the original docking scoring and the R-NiB scoring improves the yield in most cases.

7.
J Cheminform ; 8(1): 45, 2016.
Article in English | MEDLINE | ID: mdl-27606011

ABSTRACT

ABSTRACT: Receiver operating characteristics (ROC) curve with the calculation of area under curve (AUC) is a useful tool to evaluate the performance of biomedical and chemoinformatics data. For example, in virtual drug screening ROC curves are very often used to visualize the efficiency of the used application to separate active ligands from inactive molecules. Unfortunately, most of the available tools for ROC analysis are implemented into commercially available software packages, or are plugins in statistical software, which are not always the easiest to use. Here, we present Rocker, a simple ROC curve visualization tool that can be used for the generation of publication quality images. Rocker also includes an automatic calculation of the AUC for the ROC curve and Boltzmann-enhanced discrimination of ROC (BEDROC). Furthermore, in virtual screening campaigns it is often important to understand the early enrichment of active ligand identification, for this Rocker offers automated calculation routine. To enable further development of Rocker, it is freely available (MIT-GPL license) for use and modifications from our web-site (http://www.jyu.fi/rocker).

8.
J Comput Aided Mol Des ; 29(10): 989-1006, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26407559

ABSTRACT

Molecular docking is by far the most common method used in protein structure-based virtual screening. This paper presents Panther, a novel ultrafast multipurpose docking tool. In Panther, a simple shape-electrostatic model of the ligand-binding area of the protein is created by utilizing the protein crystal structure. The features of the possible ligands are then compared to the model by using a similarity search algorithm. On average, one ligand can be processed in a few minutes by using classical docking methods, whereas using Panther processing takes <1 s. The presented Panther protocol can be used in several applications, such as speeding up the early phases of drug discovery projects, reducing the number of failures in the clinical phase of the drug development process, and estimating the environmental toxicity of chemicals. Panther-code is available in our web pages (http://www.jyu.fi/panther) free of charge after registration.


Subject(s)
Drug Evaluation, Preclinical/methods , Molecular Docking Simulation , Proteins/chemistry , Software , Algorithms , Area Under Curve , Binding Sites , Databases, Chemical , Estrogen Receptor alpha/chemistry , Estrogen Receptor alpha/metabolism , Ligands , Proteins/metabolism , ROC Curve , Static Electricity , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL