Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38585834

ABSTRACT

Inflammation is a key contributor to stroke pathogenesis and drives exacerbated brain damage leading to poor outcome. Interleukin-1 (IL-1) is an important regulator of post-stroke inflammation, and blocking its actions is beneficial in pre-clinical stroke models and safe in the clinical setting. IL-1α and IL-1ß are the two major IL-1 type 1 receptor (IL-1R1) agonists from the IL-1 family. The distinct roles of both isoforms, and particularly that of IL-1α, remain largely unknown. Here we show that IL-1α and IL-1ß have different spatio-temporal expression profiles in the brain after experimental stroke, with early microglial IL-1α expression (4 h) and delayed IL-1ß expression in infiltrated neutrophils and a small microglial subset (24-72 h). We examined the specific contribution of microglial-derived IL-1α in experimental permanent and transient ischemic stroke through cell-specific tamoxifen-inducible Cre-loxP-mediated recombination. Microglial IL-1α deletion did not influence acute brain damage, cerebral blood flow, IL-1ß expression, neutrophil infiltration, microglial nor endothelial activation after ischemic stroke. However, microglial IL-1α knock out (KO) mice showed reduced peri-infarct vessel density and reactive astrogliosis at 14 days post-stroke, alongside a worse functional recovery. RNA sequencing analysis and subsequent pathway analysis on ipsilateral/contralateral cortex 4 h after stroke revealed a downregulation of the neuronal CREB signaling pathway in microglial IL-1α KO compared to WT mice. Our study identifies for the first time a critical role for microglial IL-1α on neuronal activity, neurorepair and functional recovery after stroke, highlighting the importance of targeting specific IL-1 mechanisms in brain injury to develop more effective therapies.

2.
Glia ; 72(5): 833-856, 2024 May.
Article in English | MEDLINE | ID: mdl-37964690

ABSTRACT

Cerebral ischemia is a devastating condition that results in impaired blood flow in the brain leading to acute brain injury. As the most common form of stroke, occlusion of cerebral arteries leads to a characteristic sequence of pathophysiological changes in the brain tissue. The mechanisms involved, and comorbidities that determine outcome after an ischemic event appear to be highly heterogeneous. On their own, the processes leading to neuronal injury in the absence of sufficient blood supply to meet the metabolic demand of the cells are complex and manifest at different temporal and spatial scales. While the contribution of non-neuronal cells to stroke pathophysiology is increasingly recognized, recent data show that microglia, the main immune cells of the central nervous system parenchyma, play previously unrecognized roles in basic physiological processes beyond their inflammatory functions, which markedly change during ischemic conditions. In this review, we aim to discuss some of the known microglia-neuron-vascular interactions assumed to contribute to the acute and delayed pathologies after cerebral ischemia. Because the mechanisms of neuronal injury have been extensively discussed in several excellent previous reviews, here we focus on some recently explored pathways that may directly or indirectly shape neuronal injury through microglia-related actions. These discoveries suggest that modulating gliovascular processes in different forms of stroke and other neurological disorders might have presently unexplored therapeutic potential in combination with neuroprotective and flow restoration strategies.


Subject(s)
Brain Ischemia , Stroke , Humans , Microglia/metabolism , Brain Ischemia/pathology , Ischemia/metabolism , Stroke/metabolism , Neurons/pathology , Infarction, Middle Cerebral Artery/metabolism
3.
Int J Mol Sci ; 24(6)2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36982563

ABSTRACT

Chronic stress causes several pain conditions including fibromyalgia. Its pathophysiological mechanisms are unknown, and the therapy is unresolved. Since the involvement of interleukin-1 (IL-1) has been described in stress and inflammatory pain but no data are available regarding stress-induced pain, we studied its role in a chronic restraint stress (CRS) mouse model. Female and male C57Bl/6J wild-type (WT) and IL-1αß-deficient (knock-out: IL-1 KO) mice were exposed to 6 h of immobilization/day for 4 weeks. Mechanonociception, cold tolerance, behavioral alterations, relative thymus/adrenal gland weights, microglia ionized calcium-binding adaptor molecule 1 (IBA1) and astrocyte glial fibrillary acidic protein (GFAP) integrated density, number and morphological transformation in pain-related brain regions were determined. CRS induced 15-20% mechanical hyperalgesia after 2 weeks in WT mice in both sexes, which was significantly reduced in female but not in male IL-1 KOs. Increased IBA1+ integrated density in the central nucleus of amygdala, primary somatosensory cortex hind limb representation part, hippocampus cornu ammonis area 3 (CA3) and periaqueductal gray matter (PAG) was present, accompanied by a cell number increase in IBA1+ microglia in stressed female WTs but not in IL-1 KOs. CRS induced morphological changes of GFAP+ astrocytes in WT but not in KO mice. Stress evoked cold hypersensitivity in the stressed animals. Anxiety and depression-like behaviors, thymus and adrenal gland weight changes were detectable in all groups after 2 but not 4 weeks of CRS due to adaptation. Thus, IL-1 mediates chronic stress-induced hyperalgesia in female mice, without other major behavioral alterations, suggesting the analgesic potentials of IL-1 in blocking drugs in stress-related pain syndromes.


Subject(s)
Astrocytes , Hyperalgesia , Mice , Male , Female , Animals , Hyperalgesia/metabolism , Astrocytes/metabolism , Microglia/metabolism , Interleukin-1/metabolism , Pain/metabolism , Brain/metabolism
4.
J Exp Med ; 219(3)2022 03 07.
Article in English | MEDLINE | ID: mdl-35201268

ABSTRACT

Microglia, the main immunocompetent cells of the brain, regulate neuronal function, but their contribution to cerebral blood flow (CBF) regulation has remained elusive. Here, we identify microglia as important modulators of CBF both under physiological conditions and during hypoperfusion. Microglia establish direct, dynamic purinergic contacts with cells in the neurovascular unit that shape CBF in both mice and humans. Surprisingly, the absence of microglia or blockade of microglial P2Y12 receptor (P2Y12R) substantially impairs neurovascular coupling in mice, which is reiterated by chemogenetically induced microglial dysfunction associated with impaired ATP sensitivity. Hypercapnia induces rapid microglial calcium changes, P2Y12R-mediated formation of perivascular phylopodia, and microglial adenosine production, while depletion of microglia reduces brain pH and impairs hypercapnia-induced vasodilation. Microglial actions modulate vascular cyclic GMP levels but are partially independent of nitric oxide. Finally, microglial dysfunction markedly impairs P2Y12R-mediated cerebrovascular adaptation to common carotid artery occlusion resulting in hypoperfusion. Thus, our data reveal a previously unrecognized role for microglia in CBF regulation, with broad implications for common neurological diseases.


Subject(s)
Cerebrovascular Circulation/physiology , Microglia/physiology , Neurovascular Coupling/physiology , Receptors, Purinergic/physiology , Adult , Aged , Animals , Brain/physiology , Calcium Signaling/physiology , Carotid Artery Diseases/physiopathology , Evoked Potentials/physiology , Female , Humans , Hypercapnia/physiopathology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Receptors, Purinergic P2Y12/physiology , Vasodilation/physiology , Vibrissae/innervation
5.
PLoS Biol ; 20(1): e3001526, 2022 01.
Article in English | MEDLINE | ID: mdl-35085235

ABSTRACT

The NKCC1 ion transporter contributes to the pathophysiology of common neurological disorders, but its function in microglia, the main inflammatory cells of the brain, has remained unclear to date. Therefore, we generated a novel transgenic mouse line in which microglial NKCC1 was deleted. We show that microglial NKCC1 shapes both baseline and reactive microglia morphology, process recruitment to the site of injury, and adaptation to changes in cellular volume in a cell-autonomous manner via regulating membrane conductance. In addition, microglial NKCC1 deficiency results in NLRP3 inflammasome priming and increased production of interleukin-1ß (IL-1ß), rendering microglia prone to exaggerated inflammatory responses. In line with this, central (intracortical) administration of the NKCC1 blocker, bumetanide, potentiated intracortical lipopolysaccharide (LPS)-induced cytokine levels. In contrast, systemic bumetanide application decreased inflammation in the brain. Microglial NKCC1 KO animals exposed to experimental stroke showed significantly increased brain injury, inflammation, cerebral edema and worse neurological outcome. Thus, NKCC1 emerges as an important player in controlling microglial ion homeostasis and inflammatory responses through which microglia modulate brain injury. The contribution of microglia to central NKCC1 actions is likely to be relevant for common neurological disorders.


Subject(s)
Brain Edema/genetics , Brain Injuries/genetics , Microglia/metabolism , Solute Carrier Family 12, Member 2/genetics , Stroke/genetics , Animals , Brain Edema/chemically induced , Brain Edema/metabolism , Brain Edema/pathology , Brain Injuries/chemically induced , Brain Injuries/metabolism , Brain Injuries/pathology , Bumetanide/pharmacology , Embryo, Mammalian , Gene Expression Regulation , Hippocampus/drug effects , Hippocampus/metabolism , Hippocampus/pathology , Inflammasomes/drug effects , Inflammasomes/metabolism , Inflammation , Injections, Intraventricular , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Lipopolysaccharides/administration & dosage , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Microglia/drug effects , Microglia/pathology , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Neural Stem Cells/drug effects , Neural Stem Cells/metabolism , Neural Stem Cells/pathology , Phenotype , Solute Carrier Family 12, Member 2/deficiency , Stroke/chemically induced , Stroke/metabolism , Stroke/pathology
6.
J Exp Med ; 218(8)2021 08 02.
Article in English | MEDLINE | ID: mdl-34037669

ABSTRACT

Neuroinflammation is an emerging focus of translational stroke research. Preclinical studies have demonstrated a critical role for brain-invading lymphocytes in post-stroke pathophysiology. Reducing cerebral lymphocyte invasion by anti-CD49d antibodies consistently improves outcome in the acute phase after experimental stroke models. However, clinical trials testing this approach failed to show efficacy in stroke patients for the chronic outcome 3 mo after stroke. Here, we identify a potential mechanistic reason for this phenomenon by detecting chronic T cell accumulation-evading the systemic therapy-in the post-ischemic brain. We observed a persistent accumulation of T cells in mice and human autopsy samples for more than 1 mo after stroke. Cerebral T cell accumulation in the post-ischemic brain was driven by increased local T cell proliferation rather than by T cell invasion. This observation urges re-evaluation of current immunotherapeutic approaches, which target circulating lymphocytes for promoting recovery after stroke.


Subject(s)
Brain/immunology , Brain/pathology , Immunotherapy , Stroke/immunology , Stroke/therapy , T-Lymphocytes/immunology , Animals , Autopsy , Brain Ischemia/drug therapy , Brain Ischemia/immunology , Brain Ischemia/pathology , Cell Proliferation , Female , Humans , Integrin alpha4/immunology , Lymphocyte Count , Male , Mice, Inbred C57BL , Natalizumab/pharmacology , Natalizumab/therapeutic use , Neuronal Plasticity/drug effects , Recovery of Function/drug effects , Stroke/physiopathology
7.
J Cereb Blood Flow Metab ; 40(1_suppl): S67-S80, 2020 12.
Article in English | MEDLINE | ID: mdl-31987008

ABSTRACT

Selective elimination of microglia from the brain was shown to dysregulate neuronal Ca2+ signaling and to reduce the incidence of spreading depolarization (SD) during cerebral ischemia. However, the mechanisms through which microglia interfere with SD remained unexplored. Here, we identify microglia as essential modulators of the induction and evolution of SD in the physiologically intact brain in vivo. Confocal- and super-resolution microscopy revealed that a series of SDs induced rapid morphological changes in microglia, facilitated microglial process recruitment to neurons and increased the density of P2Y12 receptors (P2Y12R) on recruited microglial processes. In line with this, depolarization and hyperpolarization during SD were microglia- and P2Y12R-dependent. An absence of microglia was associated with altered potassium uptake after SD and increased the number of c-fos-positive neurons, independently of P2Y12R. Thus, the presence of microglia is likely to be essential to maintain the electrical elicitation threshold and to support the full evolution of SD, conceivably by interfering with the extracellular potassium homeostasis of the brain through sustaining [K+]e re-uptake mechanisms.


Subject(s)
Brain Ischemia/physiopathology , Microglia/metabolism , Potassium/metabolism , Animals , Disease Models, Animal , Male , Mice
8.
Science ; 367(6477): 528-537, 2020 01 31.
Article in English | MEDLINE | ID: mdl-31831638

ABSTRACT

Microglia are the main immune cells in the brain and have roles in brain homeostasis and neurological diseases. Mechanisms underlying microglia-neuron communication remain elusive. Here, we identified an interaction site between neuronal cell bodies and microglial processes in mouse and human brain. Somatic microglia-neuron junctions have a specialized nanoarchitecture optimized for purinergic signaling. Activity of neuronal mitochondria was linked with microglial junction formation, which was induced rapidly in response to neuronal activation and blocked by inhibition of P2Y12 receptors. Brain injury-induced changes at somatic junctions triggered P2Y12 receptor-dependent microglial neuroprotection, regulating neuronal calcium load and functional connectivity. Thus, microglial processes at these junctions could potentially monitor and protect neuronal functions.


Subject(s)
Brain Injuries/immunology , Brain/immunology , Intercellular Junctions/immunology , Microglia/immunology , Neurons/immunology , Receptors, Purinergic P2Y12/physiology , Animals , Brain/ultrastructure , Brain Injuries/pathology , Calcium , Cell Communication/immunology , HEK293 Cells , Humans , Mice , Mitochondria/immunology , Shab Potassium Channels/genetics , Shab Potassium Channels/physiology , Signal Transduction
9.
Proc Natl Acad Sci U S A ; 116(26): 13067-13076, 2019 06 25.
Article in English | MEDLINE | ID: mdl-31182576

ABSTRACT

Neuroimmune interactions may contribute to severe pain and regional inflammatory and autonomic signs in complex regional pain syndrome (CRPS), a posttraumatic pain disorder. Here, we investigated peripheral and central immune mechanisms in a translational passive transfer trauma mouse model of CRPS. Small plantar skin-muscle incision was performed in female C57BL/6 mice treated daily with purified serum immunoglobulin G (IgG) from patients with longstanding CRPS or healthy volunteers followed by assessment of paw edema, hyperalgesia, inflammation, and central glial activation. CRPS IgG significantly increased and prolonged swelling and induced stable hyperalgesia of the incised paw compared with IgG from healthy controls. After a short-lasting paw inflammatory response in all groups, CRPS IgG-injected mice displayed sustained, profound microglia and astrocyte activation in the dorsal horn of the spinal cord and pain-related brain regions, indicating central sensitization. Genetic deletion of interleukin-1 (IL-1) using IL-1αß knockout (KO) mice and perioperative IL-1 receptor type 1 (IL-1R1) blockade with the drug anakinra, but not treatment with the glucocorticoid prednisolone, prevented these changes. Anakinra treatment also reversed the established sensitization phenotype when initiated 8 days after incision. Furthermore, with the generation of an IL-1ß floxed(fl/fl) mouse line, we demonstrated that CRPS IgG-induced changes are in part mediated by microglia-derived IL-1ß, suggesting that both peripheral and central inflammatory mechanisms contribute to the transferred disease phenotype. These results indicate that persistent CRPS is often contributed to by autoantibodies and highlight a potential therapeutic use for clinically licensed antagonists, such as anakinra, to prevent or treat CRPS via blocking IL-1 actions.


Subject(s)
Autoantibodies/immunology , Complex Regional Pain Syndromes/immunology , Immunoglobulin G/immunology , Interleukin-1alpha/immunology , Interleukin-1beta/immunology , Adult , Animals , Autoantibodies/administration & dosage , Autoantibodies/blood , Complex Regional Pain Syndromes/blood , Complex Regional Pain Syndromes/diagnosis , Complex Regional Pain Syndromes/drug therapy , Disease Models, Animal , Female , Humans , Immunoglobulin G/administration & dosage , Immunoglobulin G/blood , Interleukin 1 Receptor Antagonist Protein/administration & dosage , Interleukin-1alpha/genetics , Interleukin-1alpha/metabolism , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Lower Extremity/injuries , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Microglia/immunology , Microglia/pathology , Middle Aged , Pain Measurement , Receptors, Interleukin-1 Type I/antagonists & inhibitors , Receptors, Interleukin-1 Type I/immunology , Receptors, Interleukin-1 Type I/metabolism , Spinal Cord Dorsal Horn/immunology , Spinal Cord Dorsal Horn/pathology
10.
Diabetologia ; 62(8): 1501-1513, 2019 08.
Article in English | MEDLINE | ID: mdl-31053872

ABSTRACT

AIMS/HYPOTHESIS: Diabetes is a worldwide epidemic linked with diverse diseases of the nervous system, including depression. A few studies suggested a connection between renin-angiotensin-aldosterone system blockers and reduced depressive symptoms, although underlying mechanisms are unclear. Here we investigated the antidepressant effect and the mechanisms of action of the angiotensin receptor 1 blocker (ARB) losartan in an experiential model of diabetes-associated depression. METHODS: Experimental diabetes was induced by streptozotocin in adult male Wistar rats. After 5 weeks of diabetes, rats were treated for 2 weeks with a non-pressor oral dose of losartan (20 mg/kg). In protocol 1, cerebrovascular perfusion and glial activation were evaluated by single-photon emission computed tomography-MRI and immunohistochemistry. In protocol 2, behaviour studies were performed (forced swim test and open field test). Hippocampal proinflammatory response and brain-derived neurotrophic factor (BDNF) signalling were also assessed. RESULTS: Here, we show that diabetic rats exhibit depression-like behaviour, which can be therapeutically reversed by losartan. This action of losartan occurs via changes in diabetes-induced neuroinflammatory responses rather than altered cerebral perfusion. We also show that as a part of its protective effect losartan restores BDNF production in astrocytes and facilitates BDNF-tropomyosin receptor kinase B-cAMP response element-binding protein signalling in the diabetic brain. CONCLUSIONS/INTERPRETATION: We identified a novel effect of losartan in the nervous system that may be implemented to alleviate symptoms of diabetes-associated depression. These findings explore a new therapeutic horizon for ARBs as possible antidepressants and suggest that BDNF could be a target of future drug development in diabetes-induced complications.


Subject(s)
Angiotensin II Type 1 Receptor Blockers/therapeutic use , Brain-Derived Neurotrophic Factor/metabolism , Depression/drug therapy , Depression/metabolism , Diabetes Complications/drug therapy , Losartan/therapeutic use , Administration, Oral , Animals , Apoptosis , Behavior, Animal , Depression/complications , Diabetes Complications/psychology , Diabetes Mellitus, Experimental , Disease Models, Animal , Hippocampus/drug effects , Inflammation , Male , Rats , Rats, Wistar , Signal Transduction
11.
Sci Rep ; 9(1): 6224, 2019 04 17.
Article in English | MEDLINE | ID: mdl-30996341

ABSTRACT

Glucose is a major fuel for the central nervous system and hypoglycemia is a significant homeostatic stressor, which elicits counterregulatory reactions. Hypothalamic metabolic- and stress-related neurons initiate these actions, however recruitment of glia in control such adaptive circuit remain unknown. Groups of fed- and fasted-, vehicle-injected, and fasted + insulin-injected male mice were compared in this study. Bolus insulin administration to fasted mice resulted in hypoglycemia, which increased hypothalamo-pituitary-adrenal (HPA) axis- and sympathetic activity, increased transcription of neuropeptide Y (Npy) and agouti-related peptide (Agrp) in the hypothalamic arcuate nucleus and activated IBA1+ microglia in the hypothalamus. Activated microglia were found in close apposition to hypoglycemia-responsive NPY neurons. Inhibition of microglia by minocycline increased counterregulatory sympathetic response to hypoglycemia. Fractalkine-CX3CR1 signaling plays a role in control of microglia during hypoglycemia, because density and solidity of IBA1-ir profiles was attenuated in fasted, insulin-treated, CX3CR1 KO mice, which was parallel with exaggerated neuropeptide responses and higher blood glucose levels following insulin administration. Hypoglycemia increased Il-1b expression in the arcuate nucleus, while IL-1a/b knockout mice display improved glycemic control to insulin administration. In conclusion, activated microglia in the arcuate nucleus interferes with central counterregulatory responses to hypoglycemia. These results underscore involvement of microglia in hypothalamic regulation of glucose homeostasis.


Subject(s)
Arcuate Nucleus of Hypothalamus/metabolism , Blood Glucose/metabolism , Hypoglycemia/metabolism , Microglia/metabolism , Agouti-Related Protein/metabolism , Animals , Fasting , Homeostasis/genetics , Hypoglycemia/chemically induced , Hypothalamo-Hypophyseal System/metabolism , Insulin/administration & dosage , Insulin/pharmacology , Interleukin-1alpha/genetics , Interleukin-1alpha/metabolism , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neurons/metabolism , Neuropeptide Y/metabolism , Peptide Fragments/metabolism
12.
Brain Behav Immun ; 76: 126-138, 2019 02.
Article in English | MEDLINE | ID: mdl-30453020

ABSTRACT

The cytokine interleukin-1 (IL-1) is a key contributor to neuroinflammation and brain injury, yet mechanisms by which IL-1 triggers neuronal injury remain unknown. Here we induced conditional deletion of IL-1R1 in brain endothelial cells, neurons and blood cells to assess site-specific IL-1 actions in a model of cerebral ischaemia in mice. Tamoxifen treatment of IL-1R1 floxed (fl/fl) mice crossed with mice expressing tamoxifen-inducible Cre-recombinase under the Slco1c1 promoter resulted in brain endothelium-specific deletion of IL-1R1 and a significant decrease in infarct size (29%), blood-brain barrier (BBB) breakdown (53%) and neurological deficit (40%) compared to vehicle-treated or control (IL-1R1fl/fl) mice. Absence of brain endothelial IL-1 signalling improved cerebral blood flow, followed by reduced neutrophil infiltration and vascular activation 24 h after brain injury. Conditional IL-1R1 deletion in neurons using tamoxifen inducible nestin-Cre mice resulted in reduced neuronal injury (25%) and altered microglia-neuron interactions, without affecting cerebral perfusion or vascular activation. Deletion of IL-1R1 specifically in cholinergic neurons reduced infarct size, brain oedema and improved functional outcome. Ubiquitous deletion of IL-1R1 had no effect on brain injury, suggesting beneficial compensatory mechanisms on other cells against the detrimental effects of IL-1 on endothelial cells and neurons. We also show that IL-1R1 signalling deletion in platelets or myeloid cells does not contribute to brain injury after experimental stroke. Thus, brain endothelial and neuronal (cholinergic) IL-1R1 mediate detrimental actions of IL-1 in the brain in ischaemic stroke. Cell-specific targeting of IL-1R1 in the brain could therefore have therapeutic benefits in stroke and other cerebrovascular diseases.


Subject(s)
Brain Ischemia/immunology , Interleukin-1/metabolism , Animals , Blood-Brain Barrier/metabolism , Brain/metabolism , Brain Injuries/metabolism , Brain Ischemia/metabolism , Cholinergic Neurons/metabolism , Cholinergic Neurons/physiology , Cytokines/metabolism , Endothelial Cells/metabolism , Endothelial Cells/physiology , Inflammation/metabolism , Interleukin-1/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Microglia/metabolism , Receptors, Interleukin-1/metabolism , Receptors, Interleukin-1 Type I/metabolism , Signal Transduction
13.
Br J Cancer ; 120(2): 207-217, 2019 01.
Article in English | MEDLINE | ID: mdl-30518816

ABSTRACT

BACKGROUND: Advanced cancer causes necrosis and releases damage-associated molecular patterns (DAMPs). Mitochondrial DAMPs activate neutrophils, including generation of neutrophil extracellular traps (NETs), which are injurious, thrombogenic, and implicated in metastasis. We hypothesised that extracellular mitochondrial DNA (mtDNA) in ascites from patients with epithelial ovarian cancer (EOC) would correlate with worse outcomes. METHODS: Banked ascites supernatants from patients with newly diagnosed advanced EOC were analysed for mtDNA, neutrophil elastase, and activation of healthy donor neutrophils and platelets. TCGA was mined for expression of SELP and ELANE. RESULTS: The highest quartile of ascites mtDNA correlated with reduced progression-free survival (PFS) and a higher likelihood of disease progression within 12-months following primary surgery (n = 68, log-rank, p = 0.0178). NETs were detected in resected tumours. Ascites supernatants chemoattracted neutrophils, induced NETs, and activated platelets. Ascites exposure rendered neutrophils suppressive, based on abrogation of ex vivo stimulated T cell proliferation. Increased SELP mRNA expression correlated with worse overall survival (n = 302, Cox model, p = 0.02). CONCLUSION: In this single-centre retrospective analysis, ascites mtDNA correlated with worse PFS in advanced EOC. Mitochondrial and other DAMPs in ascites may activate neutrophil and platelet responses that facilitate metastasis and obstruct anti-tumour immunity. These pathways are potential prognostic markers and therapeutic targets.


Subject(s)
Alarmins/genetics , Carcinoma, Ovarian Epithelial/genetics , DNA, Mitochondrial/genetics , Extracellular Traps/genetics , Aged , Ascites/genetics , Ascites/pathology , Blood Platelets/metabolism , Carcinoma, Ovarian Epithelial/pathology , Extracellular Traps/metabolism , Female , Gene Expression Regulation, Neoplastic/genetics , Humans , Leukocyte Elastase/genetics , Middle Aged , Neoplasm Metastasis , Neoplasm Staging , Neutrophils/metabolism , Neutrophils/pathology , Progression-Free Survival , Tumor Microenvironment/genetics
14.
Front Cell Neurosci ; 12: 380, 2018.
Article in English | MEDLINE | ID: mdl-30410436

ABSTRACT

Hypertriglyceridemia is not only a serious risk factor in the development of cardiovascular diseases, but it is linked to neurodegeneration, too. Previously, we generated transgenic mice overexpressing the human APOB-100 protein, a mouse model of human atherosclerosis. In this model we observed high plasma levels of triglycerides, oxidative stress, tau hyperphosphorylation, synaptic dysfunction, cognitive impairment, increased neural apoptosis and neurodegeneration. Neurovascular dysfunction is recognized as a key factor in the development of neurodegenerative diseases, but the cellular and molecular events linking cerebrovascular pathology and neurodegeneration are not fully understood. Our aim was to study cerebrovascular changes in APOB-100 transgenic mice. We described the kinetics of the development of chronic hypertriglyceridemia in the transgenic animals. Increased blood-brain barrier permeability was found in the hippocampus of APOB-100 transgenic mice which was accompanied by structural changes. Using transmission electron microscopy, we detected changes in the brain capillary endothelial tight junction structure and edematous swelling of astrocyte endfeet. In brain microvessels isolated from APOB-100 transgenic animals increased Lox-1, Aqp4, and decreased Meox-2, Mfsd2a, Abcb1a, Lrp2, Glut-1, Nos2, Nos3, Vim, and in transgenic brains reduced Cdh2 and Gfap-σ gene expressions were measured using quantitative real-time PCR. We confirmed the decreased P-glycoprotein (ABCB1) and vimentin expression related to the neurovascular unit by immunostaining in transgenic brain sections using confocal microscopy. We conclude that in chronic hypertriglyceridemic APOB-100 transgenic mice both functional and morphological cerebrovascular pathology can be observed, and this animal model could be a useful tool to study the link between cerebrovascular pathology and neurodegeneration.

15.
Arterioscler Thromb Vasc Biol ; 38(11): 2678-2690, 2018 11.
Article in English | MEDLINE | ID: mdl-30354247

ABSTRACT

Objective- Circulating complement factors are activated by tissue damage and contribute to acute brain injury. The deposition of MBL (mannose-binding lectin), one of the initiators of the lectin complement pathway, on the cerebral endothelium activated by ischemia is a major pathogenic event leading to brain injury. The molecular mechanisms through which MBL influences outcome after ischemia are not understood yet. Approach and Results- Here we show that MBL-deficient (MBL-/-) mice subjected to cerebral ischemia display better flow recovery and less plasma extravasation in the brain than wild-type mice, as assessed by in vivo 2-photon microscopy. This results in reduced vascular dysfunction as shown by the shift from a pro- to an anti-inflammatory vascular phenotype associated with MBL deficiency. We also show that platelets directly bind MBL and that platelets from MBL-/- mice have reduced inflammatory phenotype as indicated by reduced IL-1α (interleukin-1α) content, as early as 6 hours after ischemia. Cultured human brain endothelial cells subjected to oxygen-glucose deprivation and exposed to platelets from MBL-/- mice present less cell death and lower CXCL1 (chemokine [C-X-C motif] ligand 1) release (downstream to IL-1α) than those exposed to wild-type platelets. In turn, MBL deposition on ischemic vessels significantly decreases after ischemia in mice treated with IL-1 receptor antagonist compared with controls, indicating a reciprocal interplay between MBL and IL-1α facilitating endothelial damage. Conclusions- We propose MBL as a hub of pathogenic vascular events. It acts as an early trigger of platelet IL-1α release, which in turn favors MBL deposition on ischemic vessels promoting an endothelial pro-inflammatory phenotype.


Subject(s)
Blood Platelets/metabolism , Endothelial Cells/metabolism , Infarction, Middle Cerebral Artery/metabolism , Inflammation/metabolism , Interleukin-1alpha/metabolism , Mannose-Binding Lectin/metabolism , Middle Cerebral Artery/metabolism , Platelet Activation , Animals , Cell Death , Cell Hypoxia , Cells, Cultured , Chemokine CXCL1/metabolism , Disease Models, Animal , Endothelial Cells/pathology , Hemodynamics , Humans , Infarction, Middle Cerebral Artery/genetics , Infarction, Middle Cerebral Artery/pathology , Infarction, Middle Cerebral Artery/physiopathology , Inflammation/genetics , Inflammation/pathology , Inflammation/physiopathology , Interleukin-1alpha/deficiency , Interleukin-1alpha/genetics , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Male , Mannose-Binding Lectin/deficiency , Mannose-Binding Lectin/genetics , Mice, Inbred C57BL , Mice, Knockout , Middle Cerebral Artery/pathology , Middle Cerebral Artery/physiopathology , Receptors, Interleukin-1 Type I/genetics , Receptors, Interleukin-1 Type I/metabolism , Signal Transduction
16.
Acta Neuropathol ; 136(3): 461-482, 2018 09.
Article in English | MEDLINE | ID: mdl-30027450

ABSTRACT

Neurotropic herpesviruses can establish lifelong infection in humans and contribute to severe diseases including encephalitis and neurodegeneration. However, the mechanisms through which the brain's immune system recognizes and controls viral infections propagating across synaptically linked neuronal circuits have remained unclear. Using a well-established model of alphaherpesvirus infection that reaches the brain exclusively via retrograde transsynaptic spread from the periphery, and in vivo two-photon imaging combined with high resolution microscopy, we show that microglia are recruited to and isolate infected neurons within hours. Selective elimination of microglia results in a marked increase in the spread of infection and egress of viral particles into the brain parenchyma, which are associated with diverse neurological symptoms. Microglia recruitment and clearance of infected cells require cell-autonomous P2Y12 signalling in microglia, triggered by nucleotides released from affected neurons. In turn, we identify microglia as key contributors to monocyte recruitment into the inflamed brain, which process is largely independent of P2Y12. P2Y12-positive microglia are also recruited to infected neurons in the human brain during viral encephalitis and both microglial responses and leukocyte numbers correlate with the severity of infection. Thus, our data identify a key role for microglial P2Y12 in defence against neurotropic viruses, whilst P2Y12-independent actions of microglia may contribute to neuroinflammation by facilitating monocyte recruitment to the sites of infection.


Subject(s)
Brain/metabolism , Herpesviridae Infections/metabolism , Microglia/metabolism , Monocytes/metabolism , Receptors, Purinergic P2Y12/metabolism , Signal Transduction/physiology , Animals , Brain/virology , Mice , Microglia/virology , Neurons/metabolism , Neurons/virology
17.
J Cereb Blood Flow Metab ; 36(10): 1668-1685, 2016 10.
Article in English | MEDLINE | ID: mdl-27486046

ABSTRACT

The role of inflammation in neurological disorders is increasingly recognised. Inflammatory processes are associated with the aetiology and clinical progression of migraine, psychiatric conditions, epilepsy, cerebrovascular diseases, dementia and neurodegeneration, such as seen in Alzheimer's or Parkinson's disease. Both central and systemic inflammatory actions have been linked with the development of brain diseases, suggesting that complex neuro-immune interactions could contribute to pathological changes in the brain across multiple temporal and spatial scales. However, the mechanisms through which inflammation impacts on neurological disease are improperly defined. To develop effective therapeutic approaches, it is imperative to understand how detrimental inflammatory processes could be blocked selectively, or controlled for prolonged periods, without compromising essential immune defence mechanisms. Increasing evidence indicates that common risk factors for brain disorders, such as atherosclerosis, diabetes, hypertension, obesity or infection involve the activation of NLRP3, NLRP1, NLRC4 or AIM2 inflammasomes, which are also associated with various neurological diseases. This review focuses on the mechanisms whereby inflammasomes, which integrate diverse inflammatory signals in response to pathogen-driven stimuli, tissue injury or metabolic alterations in multiple cell types and different organs of the body, could functionally link vascular- and neurological diseases and hence represent a promising therapeutic target.


Subject(s)
Brain Diseases/immunology , Inflammasomes/immunology , Neurogenic Inflammation/immunology , Vascular Diseases/immunology , Animals , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Brain Diseases/pathology , Brain Diseases/prevention & control , Cytokines/immunology , Cytokines/metabolism , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/administration & dosage , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Inflammasomes/drug effects , Neurogenic Inflammation/pathology , Neurogenic Inflammation/prevention & control , Vascular Diseases/pathology , Vascular Diseases/prevention & control
18.
Nat Commun ; 7: 11499, 2016 05 03.
Article in English | MEDLINE | ID: mdl-27139776

ABSTRACT

Microglia are the main immune cells of the brain and contribute to common brain diseases. However, it is unclear how microglia influence neuronal activity and survival in the injured brain in vivo. Here we develop a precisely controlled model of brain injury induced by cerebral ischaemia combined with fast in vivo two-photon calcium imaging and selective microglial manipulation. We show that selective elimination of microglia leads to a striking, 60% increase in infarct size, which is reversed by microglial repopulation. Microglia-mediated protection includes reduction of excitotoxic injury, since an absence of microglia leads to dysregulated neuronal calcium responses, calcium overload and increased neuronal death. Furthermore, the incidence of spreading depolarization (SD) is markedly reduced in the absence of microglia. Thus, microglia are involved in changes in neuronal network activity and SD after brain injury in vivo that could have important implications for common brain diseases.


Subject(s)
Brain Injuries/physiopathology , Microglia/physiology , Nerve Net/physiopathology , Neurons/physiology , Stroke/physiopathology , Animals , Brain Ischemia/physiopathology , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Male , Mice, Inbred C57BL , Mice, Transgenic , Microglia/metabolism , Microscopy, Fluorescence, Multiphoton , Neuroprotection/physiology , Time-Lapse Imaging/methods
19.
Fluids Barriers CNS ; 12: 17, 2015 Jul 17.
Article in English | MEDLINE | ID: mdl-26184769

ABSTRACT

BACKGROUND: The apolipoprotein B-100 (ApoB-100) transgenic mouse line is a model of human atherosclerosis. Latest findings suggest the importance of ApoB-100 in the development of neurodegenerative diseases and microvascular/perivascular localization of ApoB-100 protein was demonstrated in the cerebral cortex of ApoB-100 transgenic mice. The aim of the study was to characterize cultured brain endothelial cells, pericytes and glial cells from wild-type and ApoB-100 transgenic mice and to study the effect of oxidized low-density lipoprotein (oxLDL) on these cells. METHODS: Morphology of cells isolated from brains of wild type and ApoB-100 transgenic mice was characterized by immunohistochemistry and the intensity of immunolabeling was quantified by image analysis. Toxicity of oxLDL treatment was monitored by real-time impedance measurement and lactate dehydrogenase release. Reactive oxygen species and nitric oxide production, barrier permeability in triple co-culture blood-brain barrier model and membrane fluidity were also determined after low-density lipoprotein (LDL) or oxLDL treatment. RESULTS: The presence of ApoB-100 was confirmed in brain endothelial cells, while no morphological change was observed between wild type and transgenic cells. Oxidized but not native LDL exerted dose-dependent toxicity in all three cell types, induced barrier dysfunction and increased reactive oxygen species (ROS) production in both genotypes. A partial protection from oxLDL toxicity was seen in brain endothelial and glial cells from ApoB-100 transgenic mice. Increased membrane rigidity was measured in brain endothelial cells from ApoB-100 transgenic mice and in LDL or oxLDL treated wild type cells. CONCLUSION: The morphological and functional properties of cultured brain endothelial cells, pericytes and glial cells from ApoB-100 transgenic mice were characterized and compared to wild type cells for the first time. The membrane fluidity changes in ApoB-100 transgenic cells related to brain microvasculature indicate alterations in lipid composition which may be linked to the partial protection against oxLDL toxicity.


Subject(s)
Apolipoprotein B-100/metabolism , Blood-Brain Barrier/cytology , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/physiology , Lipoproteins, LDL/toxicity , Animals , Apolipoprotein B-100/genetics , Atherosclerosis/metabolism , Cell Survival/drug effects , Cells, Cultured , Disease Models, Animal , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Membrane Fluidity/drug effects , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neuroglia/drug effects , Neuroglia/metabolism , Nitric Oxide/metabolism , Pericytes/drug effects , Pericytes/metabolism , Reactive Oxygen Species/metabolism
20.
J Cereb Blood Flow Metab ; 35(12): 1921-9, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26219594

ABSTRACT

Inflammation that develops in the brain and peripheral organs after stroke contributes profoundly to poor outcome of patients. However, mechanisms through which inflammation impacts on brain injury and overall outcome are improperly understood, in part because the earliest inflammatory events after brain injury are not revealed by current imaging tools. Here, we show that single-photon emission computed tomography (NanoSPECT/CT Plus) allows visualization of blood brain barrier (BBB) injury after experimental stroke well before changes can be detected with magnetic resonance imaging (MRI). Early 99mTc-DTPA (diethylene triamine pentaacetic acid) signal changes predict infarct development and systemic inflammation preceding experimental stroke leads to very early perfusion deficits and increased BBB injury within 2 hours after the onset of ischemia. Acute brain injury also leads to peripheral inflammation and immunosuppression, which contribute to poor outcome of stroke patients. The SPECT imaging revealed early (within 2 hours) changes in perfusion, barrier function and inflammation in the lungs and the gut after experimental stroke, with good predictive value for the development of histopathologic changes at later time points. Collectively, visualization of early inflammatory changes after stroke could open new translational research avenues to elucidate the interactions between central and peripheral inflammation and to evaluate in vivo 'multi-system' effects of putative anti-inflammatory treatments.


Subject(s)
Brain Ischemia/diagnostic imaging , Inflammation/diagnostic imaging , Tomography, Emission-Computed, Single-Photon/methods , Animals , Blood-Brain Barrier/diagnostic imaging , Blood-Brain Barrier/pathology , Brain Ischemia/pathology , Gastrointestinal Tract/pathology , Image Processing, Computer-Assisted , Immunosuppression Therapy , Infarction, Middle Cerebral Artery/diagnostic imaging , Infarction, Middle Cerebral Artery/pathology , Inflammation/pathology , Lung/pathology , Magnetic Resonance Imaging , Male , Mice , Mice, Inbred C57BL , Nervous System Diseases/etiology , Nervous System Diseases/psychology , Radiopharmaceuticals , Stroke/diagnostic imaging , Stroke/pathology , Technetium Tc 99m Pentetate
SELECTION OF CITATIONS
SEARCH DETAIL
...