Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Mol Psychiatry ; 26(6): 2663-2676, 2021 06.
Article in English | MEDLINE | ID: mdl-33414497

ABSTRACT

Genomic copy number variants (CNVs) are routinely identified and reported back to patients with neuropsychiatric disorders, but their quantitative effects on essential traits such as cognitive ability are poorly documented. We have recently shown that the effect size of deletions on cognitive ability can be statistically predicted using measures of intolerance to haploinsufficiency. However, the effect sizes of duplications remain unknown. It is also unknown if the effect of multigenic CNVs are driven by a few genes intolerant to haploinsufficiency or distributed across tolerant genes as well. Here, we identified all CNVs > 50 kilobases in 24,092 individuals from unselected and autism cohorts with assessments of general intelligence. Statistical models used measures of intolerance to haploinsufficiency of genes included in CNVs to predict their effect size on intelligence. Intolerant genes decrease general intelligence by 0.8 and 2.6 points of intelligence quotient when duplicated or deleted, respectively. Effect sizes showed no heterogeneity across cohorts. Validation analyses demonstrated that models could predict CNV effect sizes with 78% accuracy. Data on the inheritance of 27,766 CNVs showed that deletions and duplications with the same effect size on intelligence occur de novo at the same frequency. We estimated that around 10,000 intolerant and tolerant genes negatively affect intelligence when deleted, and less than 2% have large effect sizes. Genes encompassed in CNVs were not enriched in any GOterms but gene regulation and brain expression were GOterms overrepresented in the intolerant subgroup. Such pervasive effects on cognition may be related to emergent properties of the genome not restricted to a limited number of biological pathways.


Subject(s)
DNA Copy Number Variations , Genome , Cognition , DNA Copy Number Variations/genetics , Gene Dosage , Humans , Intelligence Tests
2.
Genes Chromosomes Cancer ; 57(6): 311-319, 2018 06.
Article in English | MEDLINE | ID: mdl-29427526

ABSTRACT

The advent of large scale genomic sequencing technologies significantly improved the molecular classification of acute megakaryoblastic leukaemia (AMKL). AMKL represents a subset (∼10%) of high fatality pediatric acute myeloid leukemia (AML). Recurrent and mutually exclusive chimeric gene fusions associated with pediatric AMKL are found in 60%-70% of cases and include RBM15-MKL1, CBFA2T3-GLIS2, NUP98-KDM5A and MLL rearrangements. In addition, another 4% of AMKL harbor NUP98 rearrangements (NUP98r), with yet undetermined fusion partners. We report a novel NUP98-BPTF fusion in an infant presenting with primary refractory AMKL. In this NUP98r, the C-terminal chromatin recognition modules of BPTF, a core subunit of the NURF (nucleosome remodeling factor) ATP-dependent chromatin-remodeling complex, are fused to the N-terminal moiety of NUP98, creating an in frame NUP98-BPTF fusion, with structural homology to NUP98-KDM5A. The leukemic blasts expressed two NUP98-BPTF splicing variants, containing one or two tandemly spaced PHD chromatin reader domains. Our study also identified an unreported wild type BPTF splicing variant encoding for 2 PHD domains, detected both in normal cord blood CD34+ cells and in leukemic blasts, as with the fly BPTF homolog, Nurf301. Disease course was marked by rapid progression and primary chemoresistance, with ultimately significant tumor burden reduction following treatment with a clofarabine containing regimen. In sum, we report 2 novel NUP98-BPTF fusion isoforms that contribute to refine the NUP98r subgroup of pediatric AMKL. Multicenter clinical trials are critically required to determine the frequency of this fusion in AMKL patients and explore innovative treatment strategies for a disease still plagued with poor outcomes.


Subject(s)
Antigens, Nuclear/genetics , Leukemia, Megakaryoblastic, Acute/genetics , Nerve Tissue Proteins/genetics , Nuclear Pore Complex Proteins/genetics , Transcription Factors/genetics , Disease Progression , Drug Resistance, Neoplasm/genetics , Gene Expression Profiling , Humans , Infant , Karyotyping , Leukemia, Megakaryoblastic, Acute/drug therapy , Male , RNA Splicing
4.
Hum Mutat ; 29(1): 159-66, 2008 Jan.
Article in English | MEDLINE | ID: mdl-17924555

ABSTRACT

Fanconi anemia (FA) is a recessively inherited syndrome with predisposition to bone marrow failure and malignancies. Hypersensitivity to cross-linking agents is a cellular feature used to confirm the diagnosis. The mode of inheritance is autosomal recessive (12 subtypes) as well as X-linked (one subtype). Most genetic subtypes have initially been defined as "complementation groups" by cell fusion studies. Here we report a comprehensive genetic subtyping approach for FA that is primarily based on mutation screening, supplemented by protein expression analysis and by functional assays to test for pathogenicity of unclassified variants. Of 80 FA cases analyzed, 73 (91%) were successfully subtyped. In total, 92 distinct mutations were detected, of which 56 were novel (40 in FANCA, eight in FANCC, two in FANCD1, three in FANCE, one in FANCF, and three in FANCG). All known complementation groups were represented, except D2, J, L, and M. Three patients could not be classified because proliferating cell cultures from the probands were lacking. In cell lines from the remaining four patients, immunoblotting was used to determine their capacity to monoubiquitinate FANCD2. In one case FANCD2 monoubiquitination was normal, indicating a defect downstream. In the remaining three cases monoubiquitination was not detectable, indicating a defect upstream. In the latter four patients, pathogenic mutations in a known FA gene may have been missed, or these patients might represent novel genetic subtypes. We conclude that direct mutation screening allows a molecular diagnosis of FA in the vast majority of patients, even in cases where growing cells from affected individuals are unavailable. Proliferating cell lines are required in a minority (<15%) of the patients, to allow testing for FANCD2 ubiquitination status and sequencing of FANCD2 using cDNA, to avoid interference from pseudogenes.


Subject(s)
DNA Mutational Analysis/methods , Fanconi Anemia Complementation Group Proteins/genetics , Fanconi Anemia/diagnosis , Genetic Complementation Test , Fanconi Anemia/genetics , Fanconi Anemia Complementation Group Proteins/classification , Genetic Testing , Humans , Models, Biological , Models, Genetic , Mutation
5.
DNA Repair (Amst) ; 5(5): 556-65, 2006 May 10.
Article in English | MEDLINE | ID: mdl-16513431

ABSTRACT

The Fanconi anemia (FA) protein FANCE is an essential component of the nuclear FA core complex, which is required for monoubiquitination of the downstream target FANCD2, an important step in the FA pathway of DNA cross-link repair. FANCE is predominantly localized in the nucleus and acts as a molecular bridge between the FA core complex and FANCD2, through direct binding of both FANCC and FANCD2. At present, it is poorly understood how the nuclear accumulation of FANCE is regulated and therefore we investigated the nuclear localization of this FA protein. We found that FANCE has a strong tendency to localize in the nucleus, since the addition of a nuclear export signal does not interfere with the nuclear localization of FANCE. We also demonstrate that the nuclear accumulation of FANCE does not rely solely on its nuclear localization signal motifs, but also on FANCC. The other FA proteins are not involved in the nuclear accumulation of FANCE, indicating a tight relationship between FANCC and FANCE, as suggested from their direct interaction. Finally, we show that the region of FANCE interacting with FANCC appears to be different from the region involved in binding FANCD2. This strengthens the idea that FANCE recruits FANCD2 to the core complex, without interfering with the binding of FANCC.


Subject(s)
Fanconi Anemia Complementation Group C Protein/metabolism , Fanconi Anemia Complementation Group E Protein/metabolism , Active Transport, Cell Nucleus , Amino Acid Sequence , Binding Sites , Cell Line , Fanconi Anemia/genetics , Fanconi Anemia/metabolism , Fanconi Anemia Complementation Group C Protein/chemistry , Fanconi Anemia Complementation Group C Protein/genetics , Fanconi Anemia Complementation Group E Protein/chemistry , Fanconi Anemia Complementation Group E Protein/genetics , HeLa Cells , Humans , Mutagenesis, Site-Directed , Nuclear Export Signals/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Transfection , Two-Hybrid System Techniques
6.
J Biol Chem ; 279(38): 39421-30, 2004 Sep 17.
Article in English | MEDLINE | ID: mdl-15262960

ABSTRACT

The Fanconi anemia (FA) protein FANCF is an essential component of a nuclear core complex that protects the genome against chromosomal instability, but the specific function of FANCF is still poorly understood. Based upon the homology between human and Xenopus laevis FANCF, we carried out an extensive mutagenesis study to examine which domains are functionally important and to gain more insight into the function of FANCF. In contrast to previous suggestions, we show that FANCF does not have a ROM-like function. We found that the C terminus of FANCF interacts directly with FANCG and allows the assembly of other FA proteins into a stable complex. The N terminus appears to stabilize the interaction with FANCA and FANCG and is essential for the binding of the FANCC/FANCE subcomplex. We identified several important amino acids in this N-terminal region but, surprisingly, many amino acid changes failed to affect the function of the FANCF protein. Our data demonstrate that FANCF acts as a flexible adaptor protein that plays a key role in the proper assembly of the FA core complex.


Subject(s)
Cell Nucleus/physiology , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/metabolism , Amino Acid Sequence , Animals , Fanconi Anemia Complementation Group F Protein , Humans , Molecular Sequence Data , Mutagenesis , Protein Binding , Protein Structure, Secondary , Protein Structure, Tertiary , RNA-Binding Proteins/genetics , Sequence Homology, Amino Acid , Structure-Activity Relationship , Xenopus
SELECTION OF CITATIONS
SEARCH DETAIL
...