Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 88
Filter
1.
Blood Adv ; 8(8): 2032-2043, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38295282

ABSTRACT

ABSTRACT: Autophagy is an intracellular survival process that has established roles in the long-term survival and function of hematopoietic stem cells (HSC). We investigated the contribution of autophagy to HSC fitness during allogeneic transplantation and graft-versus-host disease (GVHD). We demonstrate in vitro that both tumor necrosis factor and IL-1ß, major components of GVHD cytokine storm, synergistically promote autophagy in both HSC and their more mature hematopoietic progenitor cells (HPC). In vivo we demonstrate that autophagy is increased in donor HSC and HPC during GVHD. Competitive transplant experiments demonstrated that autophagy-deficient cells display reduced capacity to reconstitute the hematopoietic system compared to wild-type counterparts. In a major histocompatibility complex-mismatched model of GVHD and associated cytokine dysregulation, we demonstrate that autophagy-deficient HSC and progenitors fail to establish durable hematopoiesis, leading to primary graft failure and universal transplant related mortality. Using several different models, we confirm that autophagy activity is increased in early progenitor and HSC populations in the presence of T-cell-derived inflammatory cytokines and that these HSC populations require autophagy to survive. Thus, autophagy serves as a key survival mechanism in HSC and progenitor populations after allogeneic stem cell transplant and may represent a therapeutic target to prevent graft failure during GVHD.


Subject(s)
Autophagy , Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Animals , Graft vs Host Disease/etiology , Graft vs Host Disease/prevention & control , Mice , Hematopoietic Stem Cell Transplantation/adverse effects , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/cytology , Disease Models, Animal , Transplantation, Homologous , Graft Rejection , Cytokines/metabolism
2.
Curr Osteoporos Rep ; 22(1): 80-95, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38198032

ABSTRACT

PURPOSE OF THE REVIEW: The bone and hematopoietic tissues coemerge during development and are functionally intertwined throughout mammalian life. Oncostatin M (OSM) is an inflammatory cytokine of the interleukin-6 family produced by osteoblasts, bone marrow macrophages, and neutrophils. OSM acts via two heterodimeric receptors comprising GP130 with either an OSM receptor (OSMR) or a leukemia inhibitory factor receptor (LIFR). OSMR is expressed on osteoblasts, mesenchymal, and endothelial cells and mice deficient for the Osm or Osmr genes have both bone and blood phenotypes illustrating the importance of OSM and OSMR in regulating these two intertwined tissues. RECENT FINDINGS: OSM regulates bone mass through signaling via OSMR, adaptor protein SHC1, and transducer STAT3 to both stimulate osteoclast formation and promote osteoblast commitment; the effect on bone formation is also supported by action through LIFR. OSM produced by macrophages is an important inducer of neurogenic heterotopic ossifications in peri-articular muscles following spinal cord injury. OSM produced by neutrophils in the bone marrow induces hematopoietic stem and progenitor cell proliferation in an indirect manner via OSMR expressed by bone marrow stromal and endothelial cells that form hematopoietic stem cell niches. OSM acts as a brake to therapeutic hematopoietic stem cell mobilization in response to G-CSF and CXCR4 antagonist plerixafor. Excessive OSM production by macrophages in the bone marrow is a key contributor to poor hematopoietic stem cell mobilization (mobilopathy) in people with diabetes. OSM and OSMR may also play important roles in the progression of several cancers. It is increasingly clear that OSM plays unique roles in regulating the maintenance and regeneration of bone, hematopoietic stem and progenitor cells, inflammation, and skeletal muscles. Dysregulated OSM production can lead to bone pathologies, defective muscle repair and formation of heterotopic ossifications in injured muscles, suboptimal mobilization of hematopoietic stem cells, exacerbated inflammatory responses, and anti-tumoral immunity. Ongoing research will establish whether neutralizing antibodies or cytokine traps may be useful to correct pathologies associated with excessive OSM production.


Subject(s)
Heterocyclic Compounds , Ossification, Heterotopic , Animals , Humans , Mice , Endothelial Cells/metabolism , Hematopoietic Stem Cell Mobilization , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/pathology , Mammals/metabolism , Oncostatin M/genetics , Oncostatin M/metabolism , Oncostatin M/pharmacology
3.
J Bone Miner Res ; 38(11): 1700-1717, 2023 11.
Article in English | MEDLINE | ID: mdl-37602772

ABSTRACT

Neurogenic heterotopic ossifications (NHO) are heterotopic bones that develop in periarticular muscles after severe central nervous system (CNS) injuries. Several retrospective studies have shown that NHO prevalence is higher in patients who suffer concomitant infections. However, it is unclear whether these infections directly contribute to NHO development or reflect the immunodepression observed in patients with CNS injury. Using our mouse model of NHO induced by spinal cord injury (SCI) between vertebrae T11 to T13 , we demonstrate that lipopolysaccharides (LPS) from gram-negative bacteria exacerbate NHO development in a toll-like receptor-4 (TLR4)-dependent manner, signaling through the TIR-domain-containing adapter-inducing interferon-ß (TRIF/TICAM1) adaptor rather than the myeloid differentiation primary response-88 (MYD88) adaptor. We find that T11 to T13 SCI did not significantly alter intestinal integrity nor cause intestinal bacteria translocation or endotoxemia, suggesting that NHO development is not driven by endotoxins from the gut in this model of SCI-induced NHO. Relevant to the human pathology, LPS increased expression of osteoblast markers in cultures of human fibro-adipogenic progenitors isolated from muscles surrounding NHO biopsies. In a case-control retrospective study in patients with traumatic brain injuries, infections with gram-negative Pseudomonas species were significantly associated with NHO development. Together these data suggest a functional association between gram-negative bacterial infections and NHO development and highlights infection management as a key consideration to avoid NHO development in patients. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Subject(s)
Ossification, Heterotopic , Spinal Cord Injuries , Mice , Animals , Humans , Lipopolysaccharides/pharmacology , Retrospective Studies , Spinal Cord Injuries/complications , Ossification, Heterotopic/pathology , Bacteria , Minerals
4.
Methods Mol Biol ; 2635: 43-61, 2023.
Article in English | MEDLINE | ID: mdl-37074656

ABSTRACT

The erythroblastic island (EBI) is a multicellular functional erythropoietic unit comprising a central macrophage nurturing a rosette of maturing erythroblasts. Since the discovery of EBIs more than half a century ago, EBIs are still studied by traditional microscopy methods after enrichment by sedimentation. These isolation methods are not quantitative and do not enable precise quantification of EBI numbers or frequency in the bone marrow or spleen tissues. Conventional flow cytometric methods have enabled quantification of cell aggregates co-expressing macrophage and erythroblast markers; however, it is unknown whether these aggregates contain EBIs as these aggregates cannot be visually assessed for EBI content. Combining the strengths of both microscopy and flow cytometry methods, in this chapter we describe an imaging flow cytometry method to analyze and quantitatively measure EBIs from the mouse bone marrow. This method is adaptable to other tissues such as the spleen or to other species provided that fluorescent antibodies specific to macrophages and erythroblasts are available.


Subject(s)
Bone Marrow , Erythroblasts , Mice , Animals , Flow Cytometry , Macrophages , Erythropoiesis
5.
Eur Respir J ; 61(3)2023 03.
Article in English | MEDLINE | ID: mdl-36396144

ABSTRACT

RATIONALE: Severe viral respiratory infections are often characterised by extensive myeloid cell infiltration and activation and persistent lung tissue injury. However, the immunological mechanisms driving excessive inflammation in the lung remain poorly understood. OBJECTIVES: To identify the mechanisms that drive immune cell recruitment in the lung during viral respiratory infections and identify novel drug targets to reduce inflammation and disease severity. METHODS: Preclinical murine models of influenza A virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. RESULTS: Oxidised cholesterols and the oxysterol-sensing receptor GPR183 were identified as drivers of monocyte/macrophage infiltration to the lung during influenza A virus (IAV) and SARS-CoV-2 infection. Both IAV and SARS-CoV-2 infection upregulated the enzymes cholesterol 25-hydroxylase (CH25H) and cytochrome P450 family 7 subfamily member B1 (CYP7B1) in the lung, resulting in local production of the oxidised cholesterols 25-hydroxycholesterol (25-OHC) and 7α,25-dihydroxycholesterol (7α,25-OHC). Loss-of-function mutation of Gpr183 or treatment with a GPR183 antagonist reduced macrophage infiltration and inflammatory cytokine production in the lungs of IAV- or SARS-CoV-2-infected mice. The GPR183 antagonist significantly attenuated the severity of SARS-CoV-2 infection and viral loads. Analysis of single-cell RNA-sequencing data on bronchoalveolar lavage samples from healthy controls and COVID-19 patients with moderate and severe disease revealed that CH25H, CYP7B1 and GPR183 are significantly upregulated in macrophages during COVID-19. CONCLUSION: This study demonstrates that oxysterols drive inflammation in the lung via GPR183 and provides the first preclinical evidence for the therapeutic benefit of targeting GPR183 during severe viral respiratory infections.


Subject(s)
COVID-19 , Influenza, Human , Animals , Mice , Humans , SARS-CoV-2 , Macrophages , Inflammation , Cholesterol , Lung , Receptors, G-Protein-Coupled
6.
Curr Osteoporos Rep ; 20(3): 170-185, 2022 06.
Article in English | MEDLINE | ID: mdl-35567665

ABSTRACT

PURPOSE OF REVIEW: Inflammasomes are multimeric protein structures with crucial roles in host responses against infections and injuries. The importance of inflammasome activation goes beyond host defense as a dysregulated inflammasome and subsequent secretion of IL-1 family members is believed to be involved in the pathogenesis of various diseases, some of which also produce skeletal manifestations. The purpose of this review is to summarize recent developments in the understanding of inflammasome regulation and IL-1 family members in bone physiology and pathology and current therapeutics will be discussed. RECENT FINDINGS: Small animal models have been vital to help understand how the inflammasome regulates bone dynamics. Animal models with gain or loss of function in various inflammasome components or IL-1 family signaling have illustrated how these systems can impact numerous bone pathologies and have been utilized to test new inflammasome therapeutics. It is increasingly clear that a tightly regulated inflammasome is required not only for host defense but for skeletal homeostasis, as a dysregulated inflammasome is linked to diseases of pathological bone accrual and loss. Given the complexities of inflammasome activation and redundancies in IL-1 activation and secretion, targeting these pathways is at times challenging. Ongoing research into inflammasome-mediated mechanisms will allow the development of new therapeutics for inflammasome/IL-1 diseases.


Subject(s)
Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Animals , Homeostasis , Humans , Inflammasomes/metabolism , Interleukin-1beta , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Signal Transduction
7.
Neurotrauma Rep ; 3(1): 87-96, 2022.
Article in English | MEDLINE | ID: mdl-35317305

ABSTRACT

Neurogenic heterotopic ossifications (NHOs) are incapacitating complications of traumatic brain and spinal cord injuries (SCI) that manifest as abnormal bone formation in periarticular muscles. Using a unique model of NHO after SCI in genetically unmodified mice, we have previously established that the innate immune system plays a key driving role in NHO pathogenesis. The role of adaptive immune cells in NHO pathogenesis, however, remains unexplored in this model. Here we established that B lymphocytes were reduced in the spleen and blood after SCI and increased in muscles of mice in which NHO develops, whereas minimal changes in T cell frequencies were noted. Interestingly, Rag1 -/- mice lacking mature T and B lymphocytes, developed NHO, similar to wild-type mice. Finally, mice that underwent splenectomy before SCI and muscle damage also developed NHO to the same extent as non-splenectomized SCI controls. Overall, our findings show that functional T and B lymphocytes have minimal influence or dispensable contributions to NHO development after experimental SCI in mice.

8.
Bone Res ; 10(1): 22, 2022 Feb 25.
Article in English | MEDLINE | ID: mdl-35217633

ABSTRACT

The cells of origin of neurogenic heterotopic ossifications (NHOs), which develop frequently in the periarticular muscles following spinal cord injuries (SCIs) and traumatic brain injuries, remain unclear because skeletal muscle harbors two progenitor cell populations: satellite cells (SCs), which are myogenic, and fibroadipogenic progenitors (FAPs), which are mesenchymal. Lineage-tracing experiments using the Cre recombinase/LoxP system were performed in two mouse strains with the fluorescent protein ZsGreen specifically expressed in either SCs or FAPs in skeletal muscles under the control of the Pax7 or Prrx1 gene promoter, respectively. These experiments demonstrate that following muscle injury, SCI causes the upregulation of PDGFRα expression on FAPs but not SCs and the failure of SCs to regenerate myofibers in the injured muscle, with reduced apoptosis and continued proliferation of muscle resident FAPs enabling their osteogenic differentiation into NHOs. No cells expressing ZsGreen under the Prrx1 promoter were detected in the blood after injury, suggesting that the cells of origin of NHOs are locally derived from the injured muscle. We validated these findings using human NHO biopsies. PDGFRα+ mesenchymal cells isolated from the muscle surrounding NHO biopsies could develop ectopic human bones when transplanted into immunocompromised mice, whereas CD56+ myogenic cells had a much lower potential. Therefore, NHO is a pathology of the injured muscle in which SCI reprograms FAPs to undergo uncontrolled proliferation and differentiation into osteoblasts.

9.
J Bone Miner Res ; 37(3): 531-546, 2022 03.
Article in English | MEDLINE | ID: mdl-34841579

ABSTRACT

Neurogenic heterotopic ossifications (NHOs) form in periarticular muscles after severe spinal cord (SCI) and traumatic brain injuries. The pathogenesis of NHO is poorly understood with no effective preventive treatment. The only curative treatment remains surgical resection of pathological NHOs. In a mouse model of SCI-induced NHO that involves a transection of the spinal cord combined with a muscle injury, a differential gene expression analysis revealed that genes involved in inflammation such as interleukin-1ß (IL-1ß) were overexpressed in muscles developing NHO. Using mice knocked-out for the gene encoding IL-1 receptor (IL1R1) and neutralizing antibodies for IL-1α and IL-1ß, we show that IL-1 signaling contributes to NHO development after SCI in mice. Interestingly, other proteins involved in inflammation that were also overexpressed in muscles developing NHO, such as colony-stimulating factor-1, tumor necrosis factor, or C-C chemokine ligand-2, did not promote NHO development. Finally, using NHO biopsies from SCI and TBI patients, we show that IL-1ß is expressed by CD68+ macrophages. IL-1α and IL-1ß produced by activated human monocytes promote calcium mineralization and RUNX2 expression in fibro-adipogenic progenitors isolated from muscles surrounding NHOs. Altogether, these data suggest that interleukin-1 promotes NHO development in both humans and mice. © 2021 American Society for Bone and Mineral Research (ASBMR).


Subject(s)
Interleukin-1beta/metabolism , Ossification, Heterotopic , Spinal Cord Injuries , Animals , Humans , Inflammation/complications , Interleukin-1 , Mice , Muscles/pathology , Ossification, Heterotopic/pathology , Spinal Cord/metabolism , Spinal Cord/pathology , Spinal Cord Injuries/complications
10.
Leukemia ; 36(2): 333-347, 2022 02.
Article in English | MEDLINE | ID: mdl-34518644

ABSTRACT

We show that pro-inflammatory oncostatin M (OSM) is an important regulator of hematopoietic stem cell (HSC) niches in the bone marrow (BM). Treatment of healthy humans and mice with granulocyte colony-stimulating factor (G-CSF) dramatically increases OSM release in blood and BM. Using mice null for the OSM receptor (OSMR) gene, we demonstrate that OSM provides a negative feed-back acting as a brake on HSPC mobilization in response to clinically relevant mobilizing molecules G-CSF and CXCR4 antagonist. Likewise, injection of a recombinant OSM molecular trap made of OSMR complex extracellular domains enhances HSC mobilization in poor mobilizing C57BL/6 and NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ mice. Mechanistically, OSM attenuates HSC chemotactic response to CXCL12 and increases HSC homing to the BM signaling indirectly via BM endothelial and mesenchymal cells which are the only cells expressing OSMR in the BM. OSM up-regulates E-selectin expression on BM endothelial cells indirectly increasing HSC proliferation. RNA sequencing of HSCs from Osmr-/- and wild-type mice suggest that HSCs have altered cytoskeleton reorganization, energy usage and cycling in the absence of OSM signaling in niches. Therefore OSM is an important regulator of HSC niche function restraining HSC mobilization and anti-OSM therapy combined with current mobilizing regimens may improve HSPC mobilization for transplantation.


Subject(s)
Bone Marrow/physiology , Granulocyte Colony-Stimulating Factor/administration & dosage , Hematopoietic Stem Cell Mobilization/methods , Hematopoietic Stem Cells/cytology , Oncostatin M/metabolism , Stem Cell Niche , Animals , Bone Marrow/drug effects , Female , Hematopoietic Stem Cells/drug effects , Hematopoietic Stem Cells/metabolism , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Inbred NOD
11.
Cell Rep ; 37(8): 110058, 2021 11 23.
Article in English | MEDLINE | ID: mdl-34818538

ABSTRACT

Mouse hematopoietic tissues contain abundant tissue-resident macrophages that support immunity, hematopoiesis, and bone homeostasis. A systematic strategy to characterize macrophage subsets in mouse bone marrow (BM), spleen, and lymph node unexpectedly reveals that macrophage surface marker staining emanates from membrane-bound subcellular remnants associated with unrelated cells. Intact macrophages are not present within these cell preparations. The macrophage remnant binding profile reflects interactions between macrophages and other cell types in vivo. Depletion of CD169+ macrophages in vivo eliminates F4/80+ remnant attachment. Remnant-restricted macrophage-specific membrane markers, cytoplasmic fluorescent reporters, and mRNA are all detected in non-macrophage cells including isolated stem and progenitor cells. Analysis of RNA sequencing (RNA-seq) data, including publicly available datasets, indicates that macrophage fragmentation is a general phenomenon that confounds bulk and single-cell analysis of disaggregated hematopoietic tissues. Hematopoietic tissue macrophage fragmentation undermines the accuracy of macrophage ex vivo molecular profiling and creates opportunity for misattribution of macrophage-expressed genes to non-macrophage cells.


Subject(s)
Cell Separation/methods , Macrophages/cytology , Single-Cell Analysis/methods , Animals , Bone Marrow/metabolism , Hematopoiesis , Hematopoietic Stem Cells/cytology , Homeostasis , Mice
12.
Exp Hematol ; 103: 1-14, 2021 11.
Article in English | MEDLINE | ID: mdl-34500024

ABSTRACT

It has recently emerged that tissue-resident macrophages are key regulators of several stem cell niches orchestrating tissue formation during development, as well as postnatally, when they also organize the repair and regeneration of many tissues including the hemopoietic tissue. The fact that macrophages are also master regulators and effectors of innate immunity and inflammation allows them to coordinate hematopoietic response to infections, injuries, and inflammation. After recently reviewing the roles of phagocytes and macrophages in regulating normal and pathologic hematopoietic stem cell niches, we now focus on the key roles of macrophages in regulating erythropoiesis and iron homeostasis. We review herein the recent advances in understanding how macrophages at the center of erythroblastic islands form an erythropoietic niche that controls the terminal differentiation and maturation of erythroblasts into reticulocytes; how red pulp macrophages in the spleen control iron recycling and homeostasis; how these macrophages coordinate emergency erythropoiesis in response to blood loss, infections, and inflammation; and how persistent infections or inflammation can lead to anemia of inflammation via macrophages. Finally, we discuss the technical challenges associated with the molecular characterization of erythroid island macrophages and red pulp macrophages.


Subject(s)
Erythropoiesis , Inflammation/immunology , Iron/immunology , Macrophages/immunology , Persistent Infection/immunology , Anemia/immunology , Animals , Erythroblasts/immunology , Humans , Stem Cell Niche
14.
Stem Cells ; 39(11): 1532-1545, 2021 11.
Article in English | MEDLINE | ID: mdl-34260805

ABSTRACT

Hematopoietic stem cells (HSCs) with superior reconstitution potential are reported to be enriched in the endosteal compared to central bone marrow (BM) region. To investigate whether specific factors at the endosteum may contribute to HSC potency, we screened for candidate HSC niche factors enriched in the endosteal compared to central BM regions. Together with key known HSC supporting factors Kitl and Cxcl12, we report that prostacyclin/prostaglandin I2 (PGI2 ) synthase (Ptgis) was one of the most highly enriched mRNAs (>10-fold) in endosteal compared to central BM. As PGI2 signals through receptors distinct from prostaglandin E2 (PGE2 ), we investigated functional roles for PGI2 at the endosteal niche using therapeutic PGI2 analogs, iloprost, and cicaprost. We found PGI2 analogs strongly reduced HSC differentiation in vitro. Ex vivo iloprost pulse treatment also significantly boosted long-term competitive repopulation (LT-CR) potential of HSCs upon transplantation. This was associated with increased tyrosine-phosphorylation of transducer and activator of transcription-3 (STAT3) signaling in HSCs but not altered cell cycling. In vivo, iloprost administration protected BM HSC potential from radiation or granulocyte colony-stimulating factor-induced exhaustion, and restored HSC homing potential with increased Kitl and Cxcl12 transcription in the BM. In conclusion, we propose that PGI2 is a novel HSC regulator enriched in the endosteum that promotes HSC regenerative potential following stress.


Subject(s)
Bone Marrow , Epoprostenol , Epoprostenol/pharmacology , Hematopoietic Stem Cells , Iloprost/pharmacology , Stem Cell Niche/physiology
15.
Exp Hematol ; 100: 12-31.e1, 2021 08.
Article in English | MEDLINE | ID: mdl-34298116

ABSTRACT

The bone marrow (BM) contains a mosaic of niches specialized in supporting different maturity stages of hematopoietic stem and progenitor cells such as hematopoietic stem cells and myeloid, lymphoid, and erythroid progenitors. Recent advances in BM imaging and conditional gene knockout mice have revealed that niches are a complex network of cells of mesenchymal, endothelial, neuronal, and hematopoietic origins, together with local physicochemical parameters. Within these complex structures, phagocytes, such as neutrophils, macrophages, and dendritic cells, all of which are of hematopoietic origin, have been found to be important in regulating several niches in the BM, including hematopoietic stem cell niches, erythropoietic niches, and niches involved in endosteal bone formation. There is also increasing evidence that these macrophages have an important role in adapting hematopoiesis, erythropoiesis, and bone formation in response to inflammatory stressors and play a key part in maintaining the integrity and function of these. Likewise, there is also accumulating evidence that subsets of monocytes, macrophages, and other phagocytes contribute to the progression and response to treatment of several lymphoid malignancies such as multiple myeloma, Hodgkin lymphoma, and non-Hodgkin lymphoma, as well as lymphoblastic leukemia, and may also play a role in myelodysplastic syndrome and myeloproliferative neoplasms associated with Noonan syndrome and aplastic anemia. In this review, the potential functions of macrophages and other phagocytes in normal and pathologic niches are discussed, as are the challenges in studying BM and other tissue-resident macrophages at the molecular level.


Subject(s)
Hematopoiesis , Hematopoietic Stem Cells/pathology , Macrophages/pathology , Phagocytes/pathology , Animals , Bone Marrow/pathology , Hematopoietic Stem Cells/cytology , Humans , Lymphoma/pathology , Macrophages/cytology , Multiple Myeloma/pathology , Phagocytes/cytology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology
16.
J Neurotrauma ; 38(15): 2162-2175, 2021 08 01.
Article in English | MEDLINE | ID: mdl-33913747

ABSTRACT

Neuroimmune dysfunction is thought to promote the development of several acute and chronic complications in spinal cord injury (SCI) patients. Putative roles for adrenal stress hormones and catecholamines are increasingly being recognized, yet how these adversely affect peripheral tissue homeostasis and repair under SCI conditions remains elusive. Here, we investigated their influence in a mouse model of SCI with acquired neurogenic heterotopic ossification. We show that spinal cord lesions differentially influence muscular regeneration in a level-dependent manner and through a complex multi-step process that creates an osteopermissive environment within the first hours of injury. This cascade of events is shown to critically involve adrenergic signals and drive the acute release of the neuropeptide, substance P. Our findings generate new insights into the kinetics and processes that govern SCI-induced deregulations in skeletal muscle homeostasis and regeneration, thereby aiding the development of sequential therapeutic strategies that can prevent or attenuate neuromusculoskeletal complications in SCI patients.


Subject(s)
Muscle, Skeletal/pathology , Ossification, Heterotopic/etiology , Ossification, Heterotopic/pathology , Regeneration/physiology , Spinal Cord Injuries/complications , Spinal Cord Injuries/pathology , Animals , Disease Models, Animal , Female , Mice , Mice, Inbred C57BL
17.
J Exp Med ; 218(5)2021 05 03.
Article in English | MEDLINE | ID: mdl-33656514

ABSTRACT

Vincristine is an important component of many regimens used for pediatric and adult malignancies, but it causes a dose-limiting sensorimotor neuropathy for which there is no effective treatment. This study aimed to delineate the neuro-inflammatory mechanisms contributing to the development of mechanical allodynia and gait disturbances in a murine model of vincristine-induced neuropathy, as well as to identify novel treatment approaches. Here, we show that vincristine-induced peripheral neuropathy is driven by activation of the NLRP3 inflammasome and subsequent release of interleukin-1ß from macrophages, with mechanical allodynia and gait disturbances significantly reduced in knockout mice lacking NLRP3 signaling pathway components, or after treatment with the NLRP3 inhibitor MCC950. Moreover, treatment with the IL-1 receptor antagonist anakinra prevented the development of vincristine-induced neuropathy without adversely affecting chemotherapy efficacy or tumor progression in patient-derived medulloblastoma xenograph models. These results detail the neuro-inflammatory mechanisms leading to vincristine-induced peripheral neuropathy and suggest that repurposing anakinra may be an effective co-treatment strategy to prevent vincristine-induced peripheral neuropathy.


Subject(s)
Hyperalgesia/genetics , Interleukin-1beta/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Peripheral Nervous System Diseases/genetics , Xenograft Model Antitumor Assays/methods , Animals , Antineoplastic Agents/administration & dosage , Antirheumatic Agents/administration & dosage , Cisplatin/administration & dosage , Furans/administration & dosage , Humans , Hyperalgesia/chemically induced , Hyperalgesia/drug therapy , Indenes/administration & dosage , Inflammasomes/drug effects , Inflammasomes/genetics , Inflammasomes/metabolism , Interleukin 1 Receptor Antagonist Protein/administration & dosage , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Oxaliplatin/administration & dosage , Peripheral Nervous System Diseases/chemically induced , Peripheral Nervous System Diseases/drug therapy , Sulfonamides/administration & dosage , Vincristine
18.
Front Cell Dev Biol ; 9: 611842, 2021.
Article in English | MEDLINE | ID: mdl-33748104

ABSTRACT

Hematopoiesis and bone interact in various developmental and pathological processes. Neurogenic heterotopic ossifications (NHO) are the formation of ectopic hematopoietic bones in peri-articular muscles that develop following severe lesions of the central nervous system such as traumatic cerebral or spinal injuries or strokes. This review will focus on the hematopoietic facet of NHO. The characterization of NHO demonstrates the presence of hematopoietic marrow in which quiescent hematopoietic stem cells (HSC) are maintained by a functional stromal microenvironment, thus documenting that NHOs are neo-formed ectopic HSC niches. Similarly to adult bone marrow, the NHO permissive environment supports HSC maintenance, proliferation and differentiation through bidirectional signaling with mesenchymal stromal cells and endothelial cells, involving cell adhesion molecules, membrane-bound growth factors, hormones, and secreted matrix proteins. The participation of the nervous system, macrophages and inflammatory cytokines including oncostatin M and transforming growth factor (TGF)-ß in this process, reveals how neural circuitry fine-tunes the inflammatory response to generate hematopoietic bones in injured muscles. The localization of NHOs in the peri-articular muscle environment also suggests a role of muscle mesenchymal cells and bone metabolism in development of hematopoiesis in adults. Little is known about the establishment of bone marrow niches and the regulation of HSC cycling during fetal development. Similarities between NHO and development of fetal bones make NHOs an interesting model to study the establishment of bone marrow hematopoiesis during development. Conversely, identification of stage-specific factors that specify HSC developmental state during fetal bone development will give more mechanistic insights into NHO.

19.
Immunol Cell Biol ; 99(6): 622-639, 2021 07.
Article in English | MEDLINE | ID: mdl-33565143

ABSTRACT

The endothelial adhesion protein E-selectin/CD62E is not required for leukocyte homing, unlike closely related family member P-selectin/CD62P. As transmigration through the endothelium is one of the first steps in generating a local immune response, we hypothesized that E-selectin may play additional roles in the early stages of immune activation. We found contact with E-selectin, but not P-selectin or vascular cell adhesion molecule 1 (CD106), induced phosphorylation of protein kinase B (AKT) and nuclear factor-κB in mouse bone marrow-derived macrophages (BMDMs) in vitro. This occurred within 15 min of E-selectin contact and was dependent on phosphatidylinositol-3 kinase activity. Binding to E-selectin activated downstream proteins including mammalian target of rapamycin, p70 ribosomal protein S6 kinase and eukaryotic translation initiation factor 4E-binding protein 1. Functionally, adhesion to E-selectin induced upregulation of CD86 expression and CCL2 secretion. We next asked whether contact with E-selectin impacts further BMDM stimulation. We found enhanced secretion of both interleukin (IL)-10 and CCL2, but not tumor necrosis factor or IL-6 in response to lipopolysaccharide (LPS) stimulation after adhesion to E-selectin. Importantly, adhesion to E-selectin did not polarize BMDMs to one type of response but enhanced both arginase activity and nitric oxide production following IL-4 or LPS stimulation, respectively. In cultured human monocytes, adhesion to E-selectin similarly induced phosphorylation of AKT. Finally, when E-selectin was blocked in vivo in mice, thioglycollate-elicited macrophages showed reduced CD86 expression, validating our in vitro studies. Our results imply functions for E-selectin beyond homing and suggest that E-selectin plays an early role in priming and amplifying innate immune responses.


Subject(s)
E-Selectin , Proto-Oncogene Proteins c-akt , Animals , Cell Adhesion , Cells, Cultured , Endothelium, Vascular , Macrophages , Mice , TOR Serine-Threonine Kinases
20.
J Hematol Oncol ; 14(1): 3, 2021 01 06.
Article in English | MEDLINE | ID: mdl-33402221

ABSTRACT

BACKGROUND: Prior chemotherapy and/or underlying morbidity commonly leads to poor mobilisation of hematopoietic stem cells (HSC) for transplantation in cancer patients. Increasing the number of available HSC prior to mobilisation is a potential strategy to overcome this deficiency. Resident bone marrow (BM) macrophages are essential for maintenance of niches that support HSC and enable engraftment in transplant recipients. Here we examined potential of donor treatment with modified recombinant colony-stimulating factor 1 (CSF1) to influence the HSC niche and expand the HSC pool for autologous transplantation. METHODS: We administered an acute treatment regimen of CSF1 Fc fusion protein (CSF1-Fc, daily injection for 4 consecutive days) to naive C57Bl/6 mice. Treatment impacts on macrophage and HSC number, HSC function and overall hematopoiesis were assessed at both the predicted peak drug action and during post-treatment recovery. A serial treatment strategy using CSF1-Fc followed by granulocyte colony-stimulating factor (G-CSF) was used to interrogate HSC mobilisation impacts. Outcomes were assessed by in situ imaging and ex vivo standard and imaging flow cytometry with functional validation by colony formation and competitive transplantation assay. RESULTS: CSF1-Fc treatment caused a transient expansion of monocyte-macrophage cells within BM and spleen at the expense of BM B lymphopoiesis and hematopoietic stem and progenitor cell (HSPC) homeostasis. During the recovery phase after cessation of CSF1-Fc treatment, normalisation of hematopoiesis was accompanied by an increase in the total available HSPC pool. Multiple approaches confirmed that CD48-CD150+ HSC do not express the CSF1 receptor, ruling out direct action of CSF1-Fc on these cells. In the spleen, increased HSC was associated with expression of the BM HSC niche macrophage marker CD169 in red pulp macrophages, suggesting elevated spleen engraftment with CD48-CD150+ HSC was secondary to CSF1-Fc macrophage impacts. Competitive transplant assays demonstrated that pre-treatment of donors with CSF1-Fc increased the number and reconstitution potential of HSPC in blood following a HSC mobilising regimen of G-CSF treatment. CONCLUSION: These results indicate that CSF1-Fc conditioning could represent a therapeutic strategy to overcome poor HSC mobilisation and subsequently improve HSC transplantation outcomes.


Subject(s)
Hematopoietic Stem Cell Mobilization/methods , Hematopoietic Stem Cells/drug effects , Macrophage Colony-Stimulating Factor/pharmacology , Animals , Female , Granulocyte Colony-Stimulating Factor/pharmacology , Hematopoiesis/drug effects , Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells/cytology , Mice , Mice, Inbred C57BL , Recombinant Fusion Proteins/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...