Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(7): e28648, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38560230

ABSTRACT

Graphene oxide and chitosan composite material using as a high-efficiency and low-cost granular adsorbent for methylene blue removal was fabricated via self-assembling method. The effects of pH value, contact time, initial concentration, adsorbent dose, temperature, and recyclic stability on the adsorption performance of methylene blue in aqueous solution were investigated in detail. Desorption process with the effects of solvents, contact time, and temperature were also conducted carefully in this study. The adsorption kinetics and adsorption isotherm of dye adsorption process showed that dye adsorption process was fitted to the pseudo-second-order kinetic model and the Freundlich adsorption isotherm, indicating a physical adsorption process with multilayer adsorption. The intra-particle diffusion model indicated that the dye adsorption by the granular adsorbent was strongly happened during the first 4 h. The thermodynamic study showed that the adsorption was a spontaneous and exothermic process and dye ions were condensed onto the surface of adsorbent. The maximum adsorption capacity of dye on the granular adsorbent was calculated as 951.35 mg/g and the adsorbent could maintain its adsorption performance after six cycles. In general, this study provided an efficient, cost-effective, and recyclable the granular adsorbent for dye separation from aqueous solution.

2.
Neuromuscul Disord ; 27(4): 338-351, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28214269

ABSTRACT

Reports of aberrant distribution for some nuclear envelope proteins in cells expressing a few Emery-Dreifuss muscular dystrophy mutations raised the possibility that such protein redistribution could underlie pathology and/or be diagnostic. However, this disorder is linked to 8 different genes encoding nuclear envelope proteins, raising the question of whether a particular protein is most relevant. Therefore, myoblast/fibroblast cultures from biopsy and tissue sections from a panel of nine Emery-Dreifuss muscular dystrophy patients (4 male, 5 female) including those carrying emerin and FHL1 (X-linked) and several lamin A (autosomal dominant) mutations were stained for the proteins linked to the disorder. As tissue-specific nuclear envelope proteins have been postulated to mediate the tissue-specific pathologies of different nuclear envelopathies, patient samples were also stained for several muscle-specific nuclear membrane proteins. Although linked proteins nesprin 1 and SUN2 and muscle-specific proteins NET5/Samp1 and Tmem214 yielded aberrant distributions in individual patient cells, none exhibited defects through the larger patient panel. Muscle-specific Tmem38A normally appeared in both the nuclear envelope and sarcoplasmic reticulum, but most patient samples exhibited a moderate redistribution favouring the sarcoplasmic reticulum. The absence of striking uniform defects in nuclear envelope protein distribution indicates that such staining will be unavailing for general diagnostics, though it remains possible that specific mutations exhibiting protein distribution defects might reflect a particular clinical variant. These findings further argue that multiple pathways can lead to the generally similar pathologies of this disorder while at the same time the different cellular phenotypes observed possibly may help explain the considerable clinical variation of EDMD.


Subject(s)
Muscular Dystrophy, Emery-Dreifuss/metabolism , Nuclear Envelope/metabolism , Nuclear Proteins/metabolism , Tissue Banks , Adolescent , Adult , Biomarkers/metabolism , Child , Child, Preschool , Female , Humans , Immunohistochemistry , Male , Middle Aged , Muscle, Skeletal , Muscular Dystrophy, Emery-Dreifuss/pathology
3.
Mol Cell ; 62(6): 834-847, 2016 06 16.
Article in English | MEDLINE | ID: mdl-27264872

ABSTRACT

Whether gene repositioning to the nuclear periphery during differentiation adds another layer of regulation to gene expression remains controversial. Here, we resolve this by manipulating gene positions through targeting the nuclear envelope transmembrane proteins (NETs) that direct their normal repositioning during myogenesis. Combining transcriptomics with high-resolution DamID mapping of nuclear envelope-genome contacts, we show that three muscle-specific NETs, NET39, Tmem38A, and WFS1, direct specific myogenic genes to the nuclear periphery to facilitate their repression. Retargeting a NET39 fragment to nucleoli correspondingly repositioned a target gene, indicating a direct tethering mechanism. Being able to manipulate gene position independently of other changes in differentiation revealed that repositioning contributes ⅓ to ⅔ of a gene's normal repression in myogenesis. Together, these NETs affect 37% of all genes changing expression during myogenesis, and their combined knockdown almost completely blocks myotube formation. This unequivocally demonstrates that NET-directed gene repositioning is critical for developmental gene regulation.


Subject(s)
Chromosome Positioning , Gene Expression Regulation, Developmental , Ion Channels/genetics , Membrane Proteins/genetics , Muscle Development/genetics , Muscle Fibers, Skeletal/metabolism , Myoblasts, Skeletal/metabolism , Nuclear Envelope/metabolism , Nuclear Proteins/genetics , Animals , Cell Differentiation , Cell Line , Down-Regulation , Humans , Ion Channels/metabolism , Kinetics , Membrane Proteins/metabolism , Mice , Nuclear Proteins/metabolism , RNA Interference , Transfection
4.
Neuromuscul Disord ; 25(2): 127-36, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25454731

ABSTRACT

Emery-Dreifuss muscular dystrophy (EDMD) is a neuromuscular disease characterized by early contractures, slowly progressive muscular weakness and life-threatening cardiac arrhythmia that can develop into cardiomyopathy. In X-linked EDMD (EDMD1), female carriers are usually unaffected. Here we present a clinical description and in vitro characterization of a mildly affected EDMD1 female carrying the heterozygous EMD mutation c.174_175delTT; p.Y59* that yields loss of protein. Muscle tissue sections and cultured patient myoblasts exhibited a mixed population of emerin-positive and -negative cells; thus uneven X-inactivation was excluded as causative. Patient blood cells were predominantly emerin-positive, but considerable nuclear lobulation was observed in non-granulocyte cells - a novel phenotype in EDMD. Both emerin-positive and emerin-negative myoblasts exhibited spontaneous differentiation in tissue culture, though emerin-negative myoblasts were more proliferative than emerin-positive cells. The preferential proliferation of emerin-negative myoblasts together with the high rate of spontaneous differentiation in both populations suggests that loss of functional satellite cells might be one underlying mechanism for disease pathology. This could also account for the slowly developing muscle phenotype.


Subject(s)
Cell Differentiation/physiology , Cell Proliferation/physiology , Muscular Dystrophy, Emery-Dreifuss/pathology , Myoblasts/pathology , Adolescent , Adult , Age of Onset , Antigens, CD , Autoantigens/metabolism , Cardiomyopathies/etiology , Cell Cycle Proteins/metabolism , Cell Differentiation/genetics , Cell Proliferation/genetics , Cells, Cultured , Child , Family Health , Female , Flow Cytometry , Humans , Ki-67 Antigen/metabolism , Lamin Type A/metabolism , Magnetic Resonance Imaging , Male , Membrane Proteins/genetics , Membrane Proteins/metabolism , Muscular Dystrophy, Emery-Dreifuss/complications , Muscular Dystrophy, Emery-Dreifuss/genetics , Myoblasts/metabolism , Nuclear Proteins/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Transfection , Young Adult
5.
Adv Exp Med Biol ; 773: 165-85, 2014.
Article in English | MEDLINE | ID: mdl-24563348

ABSTRACT

There are many ways that the nuclear envelope can influence the cell cycle. In addition to roles of lamins in regulating the master cell cycle regulator pRb and nuclear envelope breakdown in mitosis, many other nuclear envelope proteins influence the cell cycle through regulatory or structural functions. Of particular note among these are the nuclear envelope transmembrane proteins (NETs) that appear to influence cell cycle regulation through multiple separate mechanisms. Some NETs and other nuclear envelope proteins accumulate on the mitotic spindle, suggesting functional or structural roles in the cell cycle. In interphase exogenous overexpression of some NETs promotes an increase in G1 populations, while others promote an increase in G2/M populations, sometimes associated with the induction of senescence. Intriguingly, most of the NETs linked to the cell cycle are highly restricted in their tissue expression; thus, their misregulation in cancer could contribute to the many tissue-specific types of cancer.


Subject(s)
Cell Cycle , Membrane Proteins/metabolism , Neoplasms/pathology , Nuclear Envelope/metabolism , Humans , Neoplasms/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL