Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 102
Filter
1.
Int J Nurs Knowl ; 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37700456

ABSTRACT

OBJECTIVE: To identify the most relevant clinical characteristics of the nursing diagnosis frail elderly syndrome (FES) in hospitalized patients aged 65 or older and analyze their impact on 9-month mortality and hospital readmission. METHODS: A prospective and prognostic accuracy study was conducted in patients aged 65 or older, who were admitted to hospital more than 24 h. A consecutive convenience sampling process was used. Assessment included defining characteristics (DCs) of FES, clinical fraility scale (CFS), frail scale (FS), and 9-month mortality and hospital readmission. Statistical tests were used to verify associations between variables. Binary logistic regression analysis and area under the curve were used, to identify significant predictors for the outcomes and evaluate the prognostic accuracy of the DCs. FINDINGS: This study involved 150 patients. CFS scored 65 patients (43.3%, confidence interval 95% 35.2% a 51.6) as frail and proved a prognostic value of mortality at 9 month from pre-frail state (p = 0.020). The mean number of DCs for FES nursing diagnosis was 6.35 (SD = 3.14). Validated tools for measuring frailty were associated with all DCs, excepting nutritional imbalance: below body needs. The hospital readmission during the following 9 months was only statistically related to memory impairment (p = 0.07). CONCLUSION: Clinical frailty scale showed good results as a predictor of mortality. The study suggests exploring including it, in clinical manifestations of elderly frail syndrome. This study found that only memory impairment defining characteristic was predictive of hospital readmission. Further research should identify other relevant and prognostic clinical manifestations. IMPLICATION FOR NURSING PRACTICE: These findings highlight the importance of being vigilant on cognitive decline during hospital admissions. The most prevalent and determinant DCs identified in this study indicate that clinical should focus on preserving functional and mental abilities as well as mobility.

2.
J Chem Inf Model ; 63(7): 2058-2072, 2023 04 10.
Article in English | MEDLINE | ID: mdl-36988562

ABSTRACT

Intrinsically disordered regions of proteins often mediate important protein-protein interactions. However, the folding-upon-binding nature of many polypeptide-protein interactions limits the ability of modeling tools to predict the three-dimensional structures of such complexes. To address this problem, we have taken a tandem approach combining NMR chemical shift data and molecular simulations to determine the structures of peptide-protein complexes. Here, we use the MELD (Modeling Employing Limited Data) technique applied to polypeptide complexes formed with the extraterminal domain (ET) of bromo and extraterminal domain (BET) proteins, which exhibit a high degree of binding plasticity. This system is particularly challenging as the binding process includes allosteric changes across the ET receptor upon binding, and the polypeptide binding partners can adopt different conformations (e.g., helices and hairpins) in the complex. In a blind study, the new approach successfully modeled bound-state conformations and binding poses, using only protein receptor backbone chemical shift data, in excellent agreement with experimentally determined structures for moderately tight (Kd ∼100 nM) binders. The hybrid MELD + NMR approach required additional peptide ligand chemical shift data for weaker (Kd ∼250 µM) peptide binding partners. AlphaFold also successfully predicts the structures of some of these peptide-protein complexes. However, whereas AlphaFold can provide qualitative peptide rankings, MELD can directly estimate relative binding affinities. The hybrid MELD + NMR approach offers a powerful new tool for structural analysis of protein-polypeptide complexes involving disorder-to-order transitions upon complex formation, which are not successfully modeled with most other complex prediction methods, providing both the 3D structures of peptide-protein complexes and their relative binding affinities.


Subject(s)
Molecular Dynamics Simulation , Peptides , Protein Binding , Proteins/chemistry , Protein Structure, Secondary , Protein Conformation
3.
Microorganisms ; 10(12)2022 Dec 16.
Article in English | MEDLINE | ID: mdl-36557756

ABSTRACT

Ralstonia solanacearum is a bacterial phytopathogen affecting staple crops, originally from tropical and subtropical areas, whose ability to survive in temperate environments is of concern under global warming. In this study, two R. solanacearum strains from either cold or warm habitats were stressed by simultaneous exposure to natural oligotrophy at low (4 °C), temperate (14 °C), or warm (24 °C) temperatures in environmental water. At 4 °C, the effect of temperature was higher than that of oligotrophy, since R. solanacearum went into a viable but non-culturable (VBNC) state, which proved to be dependent on water nutrient contents. Resuscitation was demonstrated in vitro and in planta. At 14 °C and 24 °C, the effect of oligotrophy was higher than that of temperature on R. solanacearum populations, displaying starvation-survival responses and morphological changes which were stronger at 24 °C. In tomato plants, starved, cold-induced VBNC, and/or resuscitated cells maintained virulence. The strains behaved similarly regardless of their cold or warm areas of origin. This work firstly describes the natural nutrient availability of environmental water favoring R. solanacearum survival, adaptations, and resuscitation in conditions that can be found in natural settings. These findings will contribute to anticipate the ability of R. solanacearum to spread, establish, and induce disease in new geographical and climatic areas.

4.
Viruses ; 13(12)2021 12 17.
Article in English | MEDLINE | ID: mdl-34960808

ABSTRACT

Ralstonia solanacearum is the causative agent of bacterial wilt, one of the most destructive plant diseases. While chemical control has an environmental impact, biological control strategies can allow sustainable agrosystems. Three lytic bacteriophages (phages) of R. solanacearum with biocontrol capacity in environmental water and plants were isolated from river water in Europe but not fully analysed, their genomic characterization being fundamental to understand their biology. In this work, the phage genomes were sequenced and subjected to bioinformatic analysis. The morphology was also observed by electron microscopy. Phylogenetic analyses were performed with a selection of phages able to infect R. solanacearum and the closely related phytopathogenic species R. pseudosolanacearum. The results indicated that the genomes of vRsoP-WF2, vRsoP-WM2 and vRsoP-WR2 range from 40,688 to 41,158 bp with almost 59% GC-contents, 52 ORFs in vRsoP-WF2 and vRsoP-WM2, and 53 in vRsoP-WR2 but, with only 22 or 23 predicted proteins with functional homologs in databases. Among them, two lysins and one exopolysaccharide (EPS) depolymerase, this type of depolymerase being identified in R. solanacearum phages for the first time. These three European phages belong to the same novel species within the Gyeongsanvirus, Autographiviridae family (formerly Podoviridae). These genomic data will contribute to a better understanding of the abilities of these phages to damage host cells and, consequently, to an improvement in the biological control of R. solanacearum.


Subject(s)
Bacteriophages/genetics , Genome, Viral , Glycoside Hydrolases/metabolism , Pest Control, Biological/methods , Ralstonia solanacearum/virology , Bacteriophages/classification , Bacteriophages/enzymology , Bacteriophages/ultrastructure , Open Reading Frames , Phylogeny , Virion/ultrastructure
5.
J Opt Soc Am A Opt Image Sci Vis ; 37(9): 1417-1422, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32902429

ABSTRACT

When encoding diffractive lenses onto a spatial light modulator (SLM), there is a Nyquist limit to the smallest focal length that can be formed. When this limit is surpassed, a two-dimensional array of lenslets is formed. There have been very few discussions on the performance of these lenslets. In this work, we focus on the phase distribution of these lenses in the array. We show that, for certain values of the focal length, the lenslets are all in perfect phase. We show that this situation happens for a total number of N/4 different discrete equidistant sub-Nyquist focal lengths, where N×N is the number of pixels in the SLM. We find other distances in between where the array is composed of two sets of lenslets with a relative π phase among them. Finally, we illustrate these phase distributions in the application to generate an array of vortex producing lenses. We expect that these results might be useful for high-accuracy interferometric or multiple imaging where this phase must be exactly the same for each replica.

6.
Sci Total Environ ; 704: 135271, 2020 Feb 20.
Article in English | MEDLINE | ID: mdl-31791783

ABSTRACT

Warming and eutrophication can have varying effects on exotic species performance and their interactions. These effects can vary with trophic level, but are rarely investigated simultaneously on exotic species from multiple trophic levels. To address this, we manipulated temperature, nutrients, and plant origin (native vs. exotic) in snail invaded wetland communities. Warming increased exotic apple snail (Pomacea maculata) reproduction (4-fold increase in egg mass) and also number of egg clutches produced while warming slowed exotic snail growth, suggesting a trade-off between reproduction and growth in exotic snails influenced by warming and nutrients. However, exotic snail size varied with warming and nutrients. Additionally, warming reduced native plant mass with no effect on exotic plants while nutrients had greater positive effects on exotic plants biomass. In combination warming and nutrient enrichment will likely increase exotic snail growth, while nutrient enrichment alone will contribute to exotic plant dominance. In conclusion, the individual and interactive effects of warming and eutrophication vary with the trophic level of exotic species with trade-offs in exotic herbivores depending on environmental conditions, making it difficult to predict effects of multiple anthropogenic factors on co-occurring exotic plants and their effects on native communities.


Subject(s)
Introduced Species , Snails , Wetlands , Animals , Biological Phenomena , Biomass , Eutrophication , Food , Herbivory , Plants , Reproduction
7.
Front Microbiol ; 10: 2813, 2019.
Article in English | MEDLINE | ID: mdl-31866979

ABSTRACT

Three new lytic bacteriophages were found to effectively control the pathogen Ralstonia solanacearum, a quarantine bacterium in many countries, and causative agent of bacterial wilt, one of the most important vascular plant diseases. Bacterial wilt management has been carried out with fluctuating effects, suggesting the need to find alternative treatments. In this work, three lytic phages were isolated from environmental water from geographically distant regions in Spain. They proved to specifically infect a collection of R. solanacearum strains, and some of the closely related pathogenic species Ralstonia pseudosolanacearum, without affecting non-target environmental bacteria, and were able to lyze the pathogen populations within a wide range of conditions comprising environmental values of water temperatures, pH, salinity, and lack of aeration found in storage tanks. The three bacteriophages displayed high efficiency in controlling R. solanacearum, with reductions of the bacterial populations of several orders of magnitude in just a few hours, and proved to be able to survive in freshwater for months at environmental temperatures keeping activity on R. solanacearum, pointing out their suitability for field application through irrigation. Concerning their biocontrol potential, they were effective in reducing high populations of the pathogen in environmental water, and bacterial wilt incidence in planta by watering with either one phage or their combinations in assays with more than 300 plants. This is the first report on effective R. solanacearum biocontrol by applying single or combined bacteriophages through irrigation water in conditions mimicking those of the natural settings. The three phages belong to the Podoviridae family and are members of the T7likevirus genus. They are the first isolated phages from river water with activity against R. solanacearum, showing the longest persistence in natural water reported until now for phages with biocontrol potential, and consistently being able to control the disease in the host plant under environmental conditions. Consequently, the use of these bacteriophages for the prevention and/or biocontrol of the bacterial wilt disease caused by R. solanacearum has been patented. Evidence provided reveals the suitability of these waterborne phages to be effectively considered as a valuable strategy within the frame of sustainable integrated management programs.

8.
PLoS One ; 14(7): e0219487, 2019.
Article in English | MEDLINE | ID: mdl-31291321

ABSTRACT

Erwinia uzenensis is a plant-pathogenic bacterium, recently described in Japan, which infects pear trees, causing the 'bacterial black shoot disease of European pear' (BBSDP). Like other Erwinia pear pathogens, E. uzenensis causes damp, black lesions on young shoots resembling those of E. amylovora, but not blossom blight, fruitlet blight or wilting of the shoot tip. The distribution of E. uzenensis seems restricted to the country where it was reported up to now, but it may spread to other countries and affect new hosts, as is the current situation with E. piriflorinigrans and E. pyrifoliae. Fast and accurate detection systems for this new pathogen are needed to study its biology and to identify it on pear or other hosts. We report here the development of a specific and sensitive detection protocol based on a real-time PCR with a TaqMan probe for E. uzenensis, and its evaluation. In sensitivity assays, the detection threshold of this protocol was 101 cfu ml-1 on pure bacterial cultures and 102-103 cfu ml-1 on spiked plant material. The specificity of the protocol was evaluated against E. uzenensis and 46 strains of pear-associated Erwinia species different to E. uzenensis. No cross-reaction with the non-target bacterial species or the loss of sensitivity were observed. This specific and sensitive diagnostic tool may reveal a wider distribution and host range of E. uzenensis initially considered restricted to a region and will expand our knowledge of the life cycle and environmental preferences of this pathogen.


Subject(s)
Erwinia/isolation & purification , Plant Diseases/microbiology , Pyrus/microbiology , Real-Time Polymerase Chain Reaction/methods , DNA, Bacterial/isolation & purification , Erwinia/genetics , Japan , Operon/genetics , RNA, Ribosomal/genetics , Sensitivity and Specificity
9.
Opt Express ; 27(10): 14472-14486, 2019 May 13.
Article in English | MEDLINE | ID: mdl-31163896

ABSTRACT

In this work, a geometric phase liquid-crystal diffraction grating based on the optimal triplicator design is realized, i.e., a phase-only profile that generates three diffraction orders with equal intensity and maximum diffraction efficiency. We analyze the polarization properties of this special diffraction grating and then use embedded spiral phases to design geometric phase vortex diffraction gratings. Finally, the fabrication of a two-dimensional version of such a design using a micro-patterned half-wave retarder is demonstrated, where the phase distribution is encoded as the orientation of the fast axis of the retarder. This proof-of-concept element is made of liquid crystal on BK7 substrate where the orientation of the LC is controlled via photoalignment, using a commercially available fabrication facility. Experimental results demonstrate the parallel generation of vortex beams with different topological charge and different states of polarization.

10.
Opt Express ; 27(3): 2374-2386, 2019 Feb 04.
Article in English | MEDLINE | ID: mdl-30732276

ABSTRACT

The robustness of the polarization spatial distribution of vector beams upon propagation is crucial for a number of applications, including optical communications and materials processing. This study has been commonly centered on Gouy phase effects on focused vector beams. In this work, we present a theoretical and experimental analysis of the Gouy phase's effects on the propagation of pure and hybrid vector beams. Experimental results at various axial planes, before and past the focus, are obtained by using a simplified liquid-crystal spatial light modulator-based optical system that allows the easy generation of these beams. Furthermore, a new alternative optical set-up that is devoid of moving elements is demonstrated, which simplifies this study. We experimentally verify the differences between pure and hybrid vector beams upon propagation. While the first ones remain stable, hybrid vector beams show Gouy phase effects that demonstrate an optical activity where the local polarization states rotate by an angle that depends on the propagation distance. Experimental results agree with the theory.

11.
Ecology ; 99(12): 2731-2739, 2018 12.
Article in English | MEDLINE | ID: mdl-30508249

ABSTRACT

Plants are able to adjust their anti-herbivore defenses in response to the volatile organic compounds (VOCs) emitted by herbivore-damaged neighbors, and some of these changes increase resistance against subsequent herbivory. This phenomenon of plant-plant communication is thought to be widespread, but recent investigations have cautioned that it can be context dependent, including variation in the strength of communication based on the identity of plants and their associated herbivores. Here, we performed three greenhouse experiments using multiple male and female genotypes of the dioecious woody shrub Baccharis salicifolia and its specialist aphid Uroleucon macolai to test for specificity of plant-plant communication with respect to plant sex and genotype. Moreover, we evaluated plant sexual dimorphism and genotypic variation in VOC emissions (i.e., the "speaking" side of the interaction) and response of plants to VOC exposure (i.e., the "listening" side of the interaction) in order to identify the chemical mechanisms underlying such specificity. We did not find genotypic specificity of communication; emitter plants damaged by U. macolai significantly reduced subsequent U. macolai performance on receivers, but these effects were indistinguishable for communication within vs. among genotypes. In contrast, we found sex specificity of communication; male emitter plants reduced subsequent U. macolai performance on male and female receiver plants equally, while female emitter plants only did so for female receivers. We found sexual (but not genotypic) dimorphism in speaking but not listening; of the seven compounds induced by U. macolai feeding (speaking), pinocarvone was approximately fivefold greater in female than in male plants, while exposure of plants to pinocarvone emissions (listening) reduced U. macolai performance equally in both male and female plants. Together, our study demonstrates novel evidence for sexually dimorphic specificity of plant-plant communication and the chemical mechanism underlying this effect.


Subject(s)
Aphids , Baccharis , Volatile Organic Compounds , Animals , Female , Genotype , Herbivory , Male , Plants
12.
Article in English | MEDLINE | ID: mdl-30533706

ABSTRACT

We report the complete annotated genome sequence of the plant-pathogenic bacterium Xylella fastidiosa subsp. fastidiosa strain IVIA5235. This strain was recovered from a cherry tree in Mallorca, Spain.

13.
Opt Lett ; 43(14): 3277-3280, 2018 Jul 15.
Article in English | MEDLINE | ID: mdl-30004485

ABSTRACT

We present a universal design and proof-of-concept of a tunable linear retarder of uniform wavelength response in a broad spectral range. It consists of two half-wave retarders (HWR) between two quarter-wave retarders (QWRs), where the uniform retardance can be tuned continuously by simply rotating one of the HWRs. A proof-of-concept of this design is built by using commercially available Fresnel rhomb retarders that provide retardation with almost wavelength uniformity in the visible and near infrared from 450 to 1550 nm. The design is universal, since other achromatic QWRs and HWRs could also be employed. The system is experimentally demonstrated to control the state of polarization of a supercontinuum laser.

14.
Int J Syst Evol Microbiol ; 68(6): 1857-1866, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29741474

ABSTRACT

Three isolates obtained from symptomatic nectarine trees (Prunus persica var. nectarina) cultivated in Murcia, Spain, which showed yellow and mucoid colonies similar to Xanthomonas arboricola pv. pruni, were negative after serological and real-time PCR analyses for this pathogen. For that reason, these isolates were characterized following a polyphasic approach that included both phenotypic and genomic methods. By sequence analysis of the 16S rRNA gene, these novel strains were identified as members of the genus Xanthomonas, and by multilocus sequence analysis (MLSA) they were clustered together in a distinct group that showed similarity values below 95 % with the rest of the species of this genus. Whole-genome comparisons of the average nucleotide identity (ANI) of genomes of the strains showed less than 91 % average nucleotide identity with all other species of the genus Xanthomonas. Additionally, phenotypic characterization based on API 20 NE, API 50 CH and BIOLOG tests differentiated the strains from the species of the genus Xanthomonas described previously. Moreover, the three strains were confirmed to be pathogenic on peach (Prunus persica), causing necrotic lesions on leaves. On the basis of these results, the novel strains represent a novel species of the genus Xanthomonas, for which the name Xanthomonas prunicola is proposed. The type strain is CFBP 8353 (=CECT 9404=IVIA 3287.1).


Subject(s)
Phylogeny , Plant Diseases/microbiology , Prunus persica/microbiology , Xanthomonas/classification , Bacterial Typing Techniques , DNA, Bacterial/genetics , Fatty Acids/chemistry , Fruit/microbiology , Multilocus Sequence Typing , Pigmentation , Plant Leaves/microbiology , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Spain , Trees , Xanthomonas/isolation & purification , Xanthomonas/pathogenicity
15.
Appl Opt ; 57(5): 1005-1010, 2018 Feb 10.
Article in English | MEDLINE | ID: mdl-29469877

ABSTRACT

We encode q-plates where the angular orientation of the principal axis is varied spatially with a nonstandard distribution. In the usual q-plate design, the orientation of the optical axis depends linearly on the azimuthal angle. In this work, we examine cases where this azimuthal dependence is nonlinear. We consider two cases: first, where the principal axis distribution is like an inverse-tangent function of the azimuth; and second, where it displays linear and flat segments. This last case is proposed as a new method for encoding binary data into the azimuthal lobes of the vector beam. We encode these patterns using a spatial light modulator system that allows new and exotic q-plate designs without the difficulty of fabricating individual plates. Experimental results are presented.

16.
PLoS One ; 13(2): e0191997, 2018.
Article in English | MEDLINE | ID: mdl-29390030

ABSTRACT

The response of plant traits to global change is of fundamental importance to understanding anthropogenic impacts on natural systems. Nevertheless, little is known about plant genetic variation in such responses or the indirect effect of environmental change on higher trophic levels. In a three-year common garden experiment, we grew the shrub Artemisia californica from five populations sourced along a 700 km latitudinal gradient under ambient and nitrogen (N) addition (20 kg N ha-1) and measured plant traits and associated arthropods. N addition increased plant biomass to a similar extent among all populations. In contrast, N addition effects on most other plant traits varied among plant populations; N addition reduced specific leaf area and leaf percent N and increased carbon to nitrogen ratios in the two northern populations, but had the opposite or no effect on the three southern populations. N addition increased arthropod abundance to a similar extent among all populations in parallel with an increase in plant biomass, suggesting that N addition did not alter plant resistance to herbivores. N addition had no effect on arthropod diversity, richness, or evenness. In summary, genetic variation among A. californica populations mediated leaf-trait responses to N addition, but positive direct effects of N addition on plant biomass and indirect effects on arthropod abundance were consistent among all populations.


Subject(s)
Artemisia/metabolism , Arthropods/physiology , Nitrogen/administration & dosage , Animals , Artemisia/growth & development , Biomass
17.
Oecologia ; 187(2): 389-400, 2018 06.
Article in English | MEDLINE | ID: mdl-29354878

ABSTRACT

Intraspecific plant trait variation can have cascading effects on plant-associated biotic communities. Sexual dimorphism is an important axis of genetic variation in dioecious plants, but the strength of such effects and the underlying mechanisms relative to genetic variation are unknown. We established a common garden with 39 genotypes of Baccharis salicifolia sampled from a single population that included male and female genotypes and measured plant traits and quantified associated arthropod communities. Genetic variation sensu lato (genotypic variation) had strong effects on most plant traits (flower number, relative growth rate, specific leaf area, percent water content, carbon-nitrogen ratio, monoterpene but not sesquiterpene concentrations) and on herbivore and predator density, and on arthropod community composition (relative abundance of 14 orders). In contrast, sexual dimorphism had weaker effects on only a few plant traits (flower number and relative growth rate), on predator density, and on arthropod community composition, but had no effect on herbivore density. Variation in flower number drove genetic variation sensu lato and sex dimorphism in predator density and arthropod community composition. There was unique genetic variation sensu lato in herbivore density (positively) associated with monoterpene concentration and in arthropod community composition associated with specific leaf area and carbon-nitrogen ratio. There was unique sexual dimorphism in arthropod community composition associated with plant relative growth rate. Together, these results demonstrate that genetic variation sensu lato and sexual dimorphism can shape plant-associated arthropod communities via both parallel and unique mechanisms, with greater overall effects of the former.


Subject(s)
Arthropods , Animals , Female , Genetic Variation , Herbivory , Male , Plants , Sex Characteristics
18.
Mol Plant Pathol ; 19(1): 169-179, 2018 01.
Article in English | MEDLINE | ID: mdl-27862834

ABSTRACT

Fire blight is a devastating plant disease caused by the bacterium Erwinia amylovora, and its control is frequently based on the use of copper-based compounds whose mechanisms of action are not well known. Consequently, in this article, we investigate the response of E. amylovora to copper shock by a whole-genome microarray approach. Transcriptional analyses showed that, in the presence of copper, 23 genes were increased in expression; these genes were classified mainly into the transport and stress functional categories. Among them, the copA gene was strongly induced and regulated in a finely tuned manner by copper. Mutation of copA, soxS, arcB, yjcE, ygcF, yhhQ, galF and EAM_3469 genes revealed that tolerance to copper in E. amylovora can be achieved by complex physiological mechanisms, including: (i) the control of copper homeostasis through, at least, the extrusion of Cu(I) by a P-type ATPase efflux pump CopA; and (ii) the overcoming of copper toxicity caused by oxidative stress by the expression of several reactive oxygen species (ROS)-related genes, including the two major transcriptional factors SoxS and ArcB. Furthermore, complementation analyses demonstrated the important role of copA for copper tolerance in E. amylovora, not only in vitro, but also in inoculated pear shoots.


Subject(s)
Copper/toxicity , Erwinia amylovora/genetics , Genes, Bacterial , Transcription, Genetic/drug effects , Adaptation, Physiological/drug effects , Erwinia amylovora/drug effects , Gene Expression Profiling , Gene Expression Regulation, Bacterial/drug effects , Genetic Association Studies , Microbial Sensitivity Tests , RNA, Messenger/genetics , RNA, Messenger/metabolism , Real-Time Polymerase Chain Reaction , Transcriptome/genetics
19.
Opt Express ; 25(20): 23773-23783, 2017 Oct 02.
Article in English | MEDLINE | ID: mdl-29041328

ABSTRACT

We report the realization of polarization sensitive split lens configurations. While split lenses can be used to easily generate different types of controlled structured light patterns, their realization has been limited so far to scalar beams. Here we propose and experimentally demonstrate their generalization to vectorial split lenses, leading to light patterns with customized intensity and state of polarization. We demonstrate how these polarization split lenses can be experimentally implemented by means of an optical system using two liquid crystal spatial light modulators, each one phase modulating one orthogonal polarization component. As a result, we demonstrate the experimental generation of vectorial beams with different shapes generated with these dual polarization split lenses. Excellent experimental results are provided in each case. The proposed technique is a simple method to generate structured light beams with polarization diversity, with potential applications in polarimetry, customized illuminators or quantum optics.

20.
Int. microbiol ; 20(4): 155-164, abr.-jun. 2017. tab, ilus
Article in English | IBECS | ID: ibc-173283

ABSTRACT

The characterization and intraspecific diversity of a collection of 45 Ralstonia solanacearum strains isolated in Spain from different sources and geographical origins is reported. To test the influence of the site and the host on strain diversity, phenotypic and genotypic analysis were performed by a polyphasic approach. Biochemical and metabolic profiles were compared. Serological relationship was evaluated by Indirect-ELISA using polyclonal and monoclonal antibodies. For genotypic analysis, hrpB and egl DNA sequence analysis, repetitive sequences (rep-PCR), amplified fragment length polymorphism (AFLP) profiles and macrorestriction with XbaI followed by pulsed field gel electrophoresis (PFGE) were performed. The biochemical and metabolic characterization, serological tests, rep-PCR typing and phylogenetic analysis showed that all analysed strains belonged to phylotype II sequevar 1 and shared homogeneous profiles. However, interesting differences among strains were found by AFLP and macrorestriction with XbaI followed by PFGE techniques, some profiles being related to the geographical origin of the strains. Diversity results obtained offer new insights into the biogeography of this quarantine organism and its possible sources and reservoirs in Spain and Mediterranean countries


No disponible


Subject(s)
Ralstonia solanacearum/isolation & purification , Water Pollution/analysis , Environmental Pollution , Plants/microbiology , Solanum tuberosum/microbiology , Water Microbiology , Phylogeny , Phylogeography/methods , Electrophoresis, Gel, Pulsed-Field/methods , Amplified Fragment Length Polymorphism Analysis/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...